Реферат: Информатика как наука: развитие и перспективы
Выполнил: студент 1-го курса
Ларин Сергей
Проверил: Артеменко
Виктор Сергеевич
Курск, 2009
План
Введение
1. Появление и развитие
1.1 Этап иероглифической символики
1.2 Этап абстрактной символики
1.3 Этап картографии, технической графики и информационной визуализации и аудирования
1.4 Этап книгопечатания
1.5 Этап технической (индустриальной) революции 19 в.
1.6 Этап математизации и формализации знаний
1.7 Этап информатизации, информационно - логического представления знаний
1.8 Этап автоформализации знаний
2. Структура
2.1 Теоретическая информатика
2.2 Математическая логика
2.3 Теория информации
2.4 Системный анализ
2.5 Кибернетика
2.6 Биоинформа́тика
2.7 Программирование
3. Кибернетика и информатика
Заключение
Литература
Введение
Прогресс невозможен без систематизации, накопления, передачи и сохранения знаний. Наши предки на каменных поверхностях пещер, на глиняных дощечках, на пергаменте и папирусе, пытались передать и сохранить свои знания для потомков. Заметим, что осуществлять строительство, проводить научные исследования, заниматься торговлей и т.д. очень трудно на основе лишь собственного ума и жизненного опыта. По мере накопления человечеством знаний стали актуальными вопросы сохранения, тщательного отбора и систематизации имеющейся информации. Так постепенно человечество пришло к науке, называемой информатикой.
Информа́тика (ср. нем. Informatik, фр. Informatique, англ. computer science — компьютерная наука — в США, англ. computing science — вычислительная наука — в Великобритании) — наука о способах получения, накоплении, хранении, преобразовании, передаче и использовании информации. Она включает дисциплины, так или иначе относящиеся к обработке информации в вычислительных машинах и вычислительных сетях: как абстрактные, вроде анализа алгоритмов, так и довольно конкретные, например, разработка языков программирования. Было бы уместным привести слова известного нидерландского ученого Эдсгер Дейкстра: «Информатика не более наука о компьютерах, чем астрономия — наука о телескопах». И действительно – эта сравнительно молодая наука, поистине велика по своим масштабам развития – всего за полвека она приобрела статус практически мировой науки, без которой сейчас не сможет работать ни одно предприятие, да что уж там – ни одна экономика любой страны не сможет существовать без этой науки. Сегодня информатика стала также и мировой индустрией. Кризис, затронувший все сферы жизни никак не смог повлиять на сферу информационных технологий. Самые богатые люди мира по версии журнала «Forbes» задействованы в сфере информационных технологий. Попробуем разобраться в истории этой науки, её структуре, а так же в перспективах её развития.
1. Появление и развитие информатики
1.1 Этап иероглифической символики
Изначально носителем информации была речь. Развитие речи, языка - объективный процесс в развитии общества. Как отмечал Ф. Энгельс, “развивающиеся люди развились до того, что им стало необходимо что-то сказать друг другу”. Труд сыграл свою роль в развитии человека. Речь (как отражение мыслительных процессов) повлияла на развитие человека не в меньшей степени. Язык обладает в среднем 20% избыточностью, т.е. любое сообщение можно было бы без потери информации сократить на 1/5, однако при этом резко уменьшается помехоустойчивость и воспринимаемость информации. К самым ранним знаковым системам относятся: приметы, гадания, знаменья, язык, изобразительное искусство, музыка, графика, пластика, танец, пантомима, архитектурные сооружения, костюм, народные ремесла, обряды. Первые примеры информационной символики были предоставлены в каменном веке в виде пиктографического письма (рисунков) на камне. В бронзовом веке появились изображения повторяющихся систем понятий – идеограмм, которые с конца IV века до н.э. превратились в рисуночное иероглифическое письмо. В то же время, благодаря развитию производства и торговли совершенствуется числовая символика, которая вначале возникла в виде счета из двух цифр 1 и 2. Все остальные количества обозначались понятием “много”. Дальнейшее развитие счета произошло, благодаря нашим физиологическим особенностям наших рук - пальцам (счёт с 5 до 10). Клинописная запись счета появилась в Вавилоне в III тыс. до н.э. Далее появились различные способы записи счета, например, вавилонская, критская, арабская, латинская и др. Вавилонская система счета позволяет вести запись чисел в пределах 1 млн. и выполнять действия с простыми дробными числами. В 5-4 в. до н.э. на острове Крит применяется удобная для записи десятичная символика счета. Древние римляне положили в основу алфавита счисления иероглифическое обозначение пальцев рук (все символы этой системы счисления можно изобразить с помощью пальцев рук). Ко времени расцвета римской культуры, эти значки были заменены похожими на них латинскими. Затем у индусов арабы заимствовали искусство быстрого счета (налицо признаки автоматизации вычислений) и значки для записи чисел, т.е. цифры, которые в VII-VIII в. до н.э. распространились и на европейском континенте.
1.2 Этап абстрактной символики
Иероглифическое письмо, хоть и является древнейшим, сохранилось до наших дней в ряде регионов (Китай, Япония, Корея). Его сохранению способствовало удобство, наглядность и то, что народы этих стран были этнически однородны и из-за особенностей культуры, традиций, географического положения слабо мигрировали. В Средиземноморье же были предпосылки совершенствования письма: различные языковые формы, развитые межнациональные торговые связи, относительно нестабильная политическая обстановка в государствах и миграция населения. Поэтому здесь за короткий исторический период завершился переход от иероглифической системы письма к абстрактной и более удобной для чтения системы клинописи на сырых глиняных табличках (III-II в. до н.э.). Следующий период создания последовательного слогового письма на глиняных табличках - вавилонский. Вавилонский язык впервые в истории начинает выполнять международные функции в дипломатии и торговле, т.е. приобретает коммуникационные и терминообразующие функции. Новым этапом явилось создание в X-IX в. до н.э. финикийского алфавита. Этап перехода к алфавитной системе завершился в VIII в. до н.э. созданием на основе финикийского письма греческого алфавита, который впоследствии стал основой всех западных письменных систем. Усовершенствованием этой информационной символики стало введение во II-I в. до н.э. в Александрии начал пунктуации. Развитие письменной символики завершается в Европе в XV в. созданием пунктуации современного вида. Появляется древнегреческая научная терминология, благодаря которой началось устранение излишней информационной избыточности (она как будет показано ниже - и благо, и вред). В период Возрождения древнегреческие и латинские языки послужили основой для создания терминологических систем в различных областях знаний. Это период расцвета не только культуры, искусства, поэзии, но и таких способов актуализации знаний, как виртуализация связей и отношений, например, архитектурные сооружения и др. Математическая символика продолжает качественно развиваться благодаря фундаментальным открытиям математики таким, как, например, создание совершенной алгебраической символики (XIV-XVII в.), введение знаков операций (XV в.), введения знаков равенства, бесконечности (XVII в.), появления знаков степени, дифференциала, интеграла, производной (XVII в.) и др.
1.3 Этап картографии, технической графики и информационной визуализации и аудирования
Особая форма представления, визуализации знаний - карты, отображающие явления природы и общества в виде информативных образов и знаков. Первые карты, дошедшие до наших дней, были составлены в Вавилоне (III-I тыс. до н.э.). Карта мира была впервые составлена Птолемеем во II в. до н.э. Создание новых картографических проектов и технологий их составления происходит в конце XVI в. Возникновение технической графики относится ко времени появления ранней письменности и развивается в связи с сооружением сложных объектов (замечательные пирамиды, дворцы, шахты, водопроводные системы) в III-II тыс. до н.э. Дальнейшее развитие техническая графика получила в эпоху Возрождения в связи с конструированием сложных машин и механизмов, например, военного характера и возведением крупных городов. Значительно позже развиваются элементы виртуализации связей и отношений в картинах многих известных художников (Дюрер, Эшер и др.). В эпоху Возрождения также предпринимаются попытки не только визуализации, на и аудирования, искусственного создания звуков (озвучивания информации). Появились модели говорящих машин. Например, в 1770 г. в Петербургской Академии наук сотрудник Санкт-Петербургского университета Краценштейн смоделировал акустические резонаторы, имитирующие голос человека. Затем, позже, Вольфганг фон Кемпелен разработал, а Уитстон построил «говорящие меха», создававшие воздушный поток для возбуждения вибрирующих язычков, игравших роль голосовых связок. В 1876 г. Александр Грейам Белл получил американский патент на устройство, названное телефоном.
Бумажный этап развития информатики можно отсчитывать, видимо, с X в., когда бумага стала производиться на предприятиях в странах Европы. Эпоха Возрождения сыграла исключительную роль в развитии не только литературы и искусства, но и информатики, особенно, её гуманитарных основ и приложений. С расширением торговли и ремесел появились городские почты: с XV в. – частная почта, с XVI в. – королевская почта. Благодаря этим стабильным коммуникациям информационная деятельность начинает расширяться, появляются первые университеты (Италия, Франция), которые начинают играть роль центров хранения и передачи информации, центров культуры и знания. Классическое университетское образование базируется на фундаментальности, универсальности, гармонизации образования, методов и средств актуализации информации.
1.4 Этап книгопечатания
Книгопечатание было изобретено в Германии в XV в. как массовая деятельность и стало началом нового научного этапа в естествознании (станок Гуттенберга, 1440-1450). Главным качественным достижением того времени стало возникновение систем научно-технической терминологии в основных отраслях знаний, появились журналы, газеты, энциклопедии, географические карты. Происходило массовое тиражирование по пространству информации на материальных носителях, что приводило к росту профессиональных знаний и развитию информационных технологий. “Книгопечатание явилось могучим орудием, которое охраняло мысль личности, увеличило ее силу в сотни раз” (В.И. Вернадский).
1.5 Этап технической (индустриальной) революции 19 в.
Книгопечатание развивало науки, способствовало систематизации и формализации знаний по отраслям. Эти знания можно было теперь быстро тиражировать (налицо появление ещё одного важного свойства информации). Знания стали доступны многим, в том числе и территориально удаленным друг от друга, а также удаленным по времени участникам трудового процесса (усиливаются пространственно-временные свойства информации). Появляются признаки параллелизма в передаче и актуализации информации, знаний. Начала раскручиваться спираль технической цивилизации: текущее знание – текущее общественное производство – новое знание – новое общественное производство. Печатный станок резко повысил пропускную способность социального канала обмена знаниями. Новый этап в развитии информатики, связанный с технической революцией 19 в., ассоциируется с началом создания регулярной почтовой связи, как формы стабильных международных коммуникаций. Затем возникли фотография (1839 г.), телеграф (1832 г.), телефон (1876 г.), радио (1895 г.), кинематограф (1905 г.), беспроволочная передача изображения (1911 г.), промышленное телевидение (1920 г.), цифровые фотография и телевидение, сотовая связь, IP-телефония (конец XX-го века).
1.6 Этап математизации и формализации знаний
С развитием промышленной революции становится все более острой потребность в создании системы описания и использования профессиональных знаний, введения фундаментальных и профессиональных понятий, формирования основных элементов технологии формализации профессиональных знаний. Первые признаки этого процесса восходят к временам, когда жрецы отказались от контроля над всем и всеми и перешли к индивидуальной специализации (появились первые специалисты - звездочеты, лекари и др.). Наиболее успешно развивается в этот период процесс формализации астрономических знаний – появляются книги с астрономическими формулами, таблицами, а на их базе разрабатываются навигационные инструменты, что позволяло передавать профессиональные знания и умения, например, за несколько лет обучать профессионально мореплавателя. Возможность процесса отчуждения профессиональных знаний от их носителей до самого последнего времени определялась возможностью формализации профессиональных знаний математическими методами и аппаратом. Области профессиональных знаний, которые оказались более формализуемыми, получили название точных или естественных наук – математика, физика, биология, химия и др. Остальные области образовали гуманитарные науки. Процесс формализации знаний, как правило, сводился к попыткам выделения из всего многообразия сведений в некоторой области человеческой деятельности небольшой части, логически определяющей достаточно многое (система аксиом и правила вывода). Отправитель и получатель информации (знаний) пользовались некоторым общим набором правил для их представления и восприятия - формализмом представления знаний. Мысль, которую нельзя выразить формализмом (языком), не может быть включена в информационный обмен, в обмен знаниями. В отраслях науки формируются специфические языковые системы, среди которых особенно важен язык математики, как информационная основа системы знаний в точных, естественных науках. Свои языки имеют химия (язык структурных химических формул, например), физика (язык описания атомных связей, например), биология (язык генетических связей и кодов) и т.д. Нынешний этап развития информатики характерен созданием и становлением языка информатики.
1.7 Этап информатизации, информационно - логического представления знаний
С появлением ЭВМ впервые в человеческой истории стал возможен способ записи и долговременного хранения профессиональных знаний, ранее формализованных математическими методами (алгоритмов, программ, баз данных, эвристик и т.д.). Эти знания, а также опыт, навыки, интуиция могли уже использоваться широко и без промежуточного воздействия на человека влиять на режим работы производственного оборудования. Процесс записи ранее формализованных профессиональных знаний в форме, готовой для воздействия на механизмы (автоматы), получил изначально название программирование. Эту деятельность часто отождествляют с искусством. Рост численности людей, занятых в информационной сфере, был вызван постоянным усложнением индустриального общества и связей в нём. В начале 70-х годов начал наблюдаться информационный кризис. Он проявился в снижении эффективности информационного обмена: резко возрос объём научно-технической публикации; специалистам различных областей стало трудно общаться; возрос объём используемой неопубликованной информации; возникли сложности в восприятии, переработке информации, выделении нужной информации из общего потока и др. Если машины и системы автоматизации в сфере материального производства постоянно совершенствовались и, соответственно, производительность труда там росла, то в сферу обработки информации средства автоматизации проникали с большим трудом. Численность людей в информационной сфере к началу 80-х годов в большинстве развитых стран составляло около 60% от общего числа занятых в производстве и продолжало расти, т.е. ЭВМ применялась там, где существовала формальная постановка задач, алгоритм. Кроме этого, ЭВМ использовалась для хранения и обработки больших наборов данных по стандартным процедурам. В то же время, область профессионально-человеческой деятельности, которая поддается пока формализации, алгоритмизации, а, следовательно, - и автоматизации с помощью ЭВМ, составляет только небольшую часть формализованных знаний, большая часть айсберга знаний пока плохо формализована и плохо структурирована. Общую структуру накопленных человечеством профессиональных знаний можно представить в виде пирамиды. Пирамида – это универсальная и замечательная структура - инвариант многих развивающихся процессов (возможно, этим объясняется тяга к построении пирамид в древности). В основании этой пирамиды лежит слой знаний, в данный момент практически недосягаемый, в частности, неотделимый от их авторов (существующий, например, на уровне подсознания) и не формализуемый. Следующий слой – это простые (“ремесленнические”) знания, которые могут быть переданы по принципу “делай как я”. Выше расположены знания, доступные для объяснения, но не всегда формально описываемые. Затем идут формально описываемые знания. Самый верхний, относительно меньший по объёму слой составляют аксиоматически построенные теории.
1.8 Этап автоформализации знаний
Этот этап тесно связан с развитием когнитологии, персональных компьютеров и вычислений, делающих возможным формальное описание (а, следовательно, актуализацию, передачу, хранение, сжатие) исследователями накопленного знания, опыта, профессиональных умений и навыков. Развиваются когнитивные методы и средства, позволяющие строить решения проблем “по ходу решения, на лету”, особенно эффективно в тех случаях, когда исследователю неизвестен путь решения. Развиваются методы виртуализации и визуализации. Этот этап очень важен для информатики, ибо он стал позволять решать межпредметные задачи, как правило, плохо структурируемые и формализуемые, а также позволил использовать типовые инструментальные системы. Используется когнитивная графика – графика, порождающая новые решения, а также “виртуальный мир” – искусственное трехмерное пространство (одну из осей координат можно условно считать “пространственной”, другую - “временной”, третью - “информационной”) и визуальные среды (например, Visual-среды).
2. Структура
2.1 Теоретическая информатика
Теоретическая информатика – это научная область, предметом изучения которой являются информация и информационные процессы; в которой осуществляется изобретение и создание новых средств работы с информацией. Как любая фундаментальная наука, теоретическая информатика (в тесном взаимодействии с философией и кибернетикой) занимается созданием системы понятий, выявлением общих закономерностей, позволяющих описывать информацию и информационные процессы, протекающие в различных сферах (в природе, обществе, человеческом организме, технических системах).
--> ЧИТАТЬ ПОЛНОСТЬЮ <--