Реферат: Информатика (полный курс)
коммуникационные устройства
Все элементы имеют свои специфические характеристики, значения которых определяют вычислительные возможности компьютера и его стоимость.
Весь парк компьютеров можно разбить на следующие основные группы:
-
персональные компьютеры (стоимость 700 - 1.500 $ );
-
профессиональные рабочие станции ( 5.000 - 50.000 $ );
-
бизнес-компьютеры или мэйнфреймы ( 100.000 - 500.000 $ );
-
суперкомпьютеры ( свыше 1.000.000 $ ).
Наиболее массовыми, естественно, являются персональные компьютеры (ПК). Персональные компьютеры появились на рынке средств вычислительной техники на рубеже 70 - 80-х годов и быстро завоевали популярность во всем мире. Они стали использоваться для решения задач в самых различных областях - в экономике, финансовом деле, в научных исследованиях, в проектировании, в управлении. Причинами такого широкого распространения ПК являются:
-
относительно невысокая стоимость;
-
высокая надежность, компактность и простота эксплуатации;
-
ориентация на самый широкий круг пользователей с разным уровнем подготовки;
-
возможность гибкого изменения набора технических средств;
-
наличие огромного количества разнообразных программных средств для самых разных областей.
В настоящее время парк ПК во всем мире насчитывает сотни миллионов единиц и продолжает расти. Наиболее распространенным типом ПК ( до 90% всего рынка) являются компьютеры, основанные на модели фирмы IBM. Машины данного семейства производятся многими фирмами по лицензии корпорации IBM. Большинство из них имеют небольшие отличия от базовой модели и поэтому называются IBM-совместимыми.
Другим весьма популярным типом ПК являются компьютеры Maсintosh фирмы Apple. Они по своим показателям превосходят IBM-совместимые, но имеют большую стоимость.
Наиболее известными производителями мощных рабочих станций являются следующие фирмы: Sun Microsystem; Silicon Graphics; Hewlett- Packard.
Представление информации в компьютере.
Компьютер может обрабатывать данные, которые представлены в специальном виде - только с помощью нулей и единиц. Каждый 0 или 1 называют битом. Один бит - это минимальная единица информации, описывающая только 2 возможных состояния. Восемь битов объединяются в байт: 00101011, 00000000, 11111111, 10101010. Байт - основная единица представления информации в компьютере. В итоге вся информация в компьютере представляется как набор огромного (сотни тысяч и миллионы) числа нулей и единиц, разбитых на отдельные байты. Такое представление информации называют цифровым или двоичным. Обработка двоичных данных выполняется с помощью специальных правил, определяемых так называемой двоичной арифметикой.
В зависимости от решаемой задачи байт может содержать закодированное представление различных типов данных.
Простейшим и исторически первым является кодирование целых чисел. Целые числа представляются в двоичном виде следующим образом:
00000000 = 0 | 00000001 = 1 | 00000010 = 2 | 00000011 = 3 | 00000100 = 4 | 00000101 = 5 |
00000110 = 6 | 00000111 = 7 | 00001000 = 8 | 00001001 = 9 | 00001010 = 10 | 00001011 = 11 |
00001100 = 12 | 00001101=13 |
. . . . . . . . . |
. . . . . . . . . . | 11111110 = 254 | 11111111 = 255 |
Диапазон целых чисел, кодируемых одним байтом, определяется числом возможных комбинаций из восьми нулей и единиц. Это число равно 2 в степени 8, т.е. 256. Если надо закодировать число больше 255, то два байта объединяются вместе и используется 16 битов. Это дает 2 в 16 степени, т.е. 65536 комбинаций. Еще большие целые числа можно представить с помощью 4 байтов или 32 битов. Для представления чисел со знаком один бит отводится под знак.
Более сложное представление существует для вещественных (не целых) чисел, и обработка таких чисел значительно сложнее для компьютера.
При обработке текстовой информации один байт может содержать код некоторого символа - буквы, цифры, знака пунктуации, знака действия и т.д. Каждому символу соответствует свой код в виде целого числа. Один байт как набор восьми битов позволяет закодировать 256 символов, что вполне достаточно для работы сразу с двумя обычными языками, например английским и русским. При этом все коды собираются в специальные таблицы, называемые кодировочными. С их помощью производится преобразование кода символа в его видимое представление на экране монитора.
Обработка графической информации требует своего способа кодирования. Любое изображение представляется в виде огромного числа отдельных точек. Обычная картинка на экране может содержать до миллиона таких точек. Простейшим изображением является черно-белое. В этом случае одна точка изображения может кодироваться одним битом, например 0 - черная точка, 1 - белая. Для запоминания изображения из 1 миллиона точек в этом случае потребуется около 100.000 байт. Цветное изображение требует большего числа байтов, причем чем больше используется цветов, тем больше требуется байтов. При работе с 16-цветными изображениями одна точка требует 4 бита, т.е. один байт содержит информацию о двух точках изображения. Работа с 256-цветными изображениями требует уже целого байта для одной точки и около 1 миллиона байт для всего изображения. Наиболее реалистичные изображения используют 2 байта на одну точку, что позволяет выводить 65536 цветовых оттенков. Все это говорит о том, что обработка графической информации для компьютера является гораздо более сложной задачей по сравнению с обработкой числовой и текстовой информации.
Также весьма трудоемкой является обработка звуковой информации, которая тоже представляется в двоичном виде.
Основная память
Основная или оперативная память используется для кратковременного хранения обрабатываемых данных и программ, используемых для этой обработки. Этот вид памяти не используется для долговременного хранения программ и данных. Другими словами, данные, которые требуется обработать, должны находиться в основной памяти, вместе с необходимыми программами.