Реферат: Инфракрасная спектроскопия

В медицине инфракрасной спектроскопии в последние годы используют для определения некоторых веществ в биологических жидкостях: крови, моче, слюне, слезной жидкости, желчи, молоке, для идентификации некоторых витаминов, гормонов и других биологически активных веществ.

Кроме того, в последнее время метод находит все более широкое применение для характеристики конформационных и структурных изменений белков, липидов, фосфолипидов биомембран клеток, исследуемых в биоптатах, а также с помощью волоконно-оптических методик.

С помощью этого метода можно оценивать фармокинетику различных лекарственных препаратов. При сахарном диабете выявлены достоверно значимые изменения инфракрасного спектра крови Доказана возможность использования показателей инфракрасного спектра для ранней диагностики стоматологических заболеваний и прогнозирования кариеса зубов у детей. Проведено исследование быстрых изменений показателей инфракрасного спектра крови для прогнозирования, диагностики и определения степени тяжести остеопороза и эффективности его лечения. Доказана возможность использования инфракрасной спектроскопии для изучения процессов регенерации.

Инфракрасная спектроскопия применяется также и в судебном анализе для изучения митохондриального генома при идентификации личности и определении отцовства, т.к. идентифицируется генетический фокус DIS80, содержащий переменные числа тандемных дупликаций.

Приборы для инфракрасной спектроскопии

Для регистрации спектров используют классические спектрофотометры и фурье-спектрометры.

Исследовательский ИК спектрометр Varian Scimitar 1000 FT-IR

Основные части классического спектрофотометра - источник непрерывного теплового излучения, монохроматор, неселективный приемник излучения. Кювета с веществом (в любом агрегатном состоянии) помещается перед входной (иногда за выходной) щелью. В качестве диспергирующего устройства монохроматора применяют призмы из различных материалов (LiF, NaCl, KCl, CsF и др.) и дифракционной решетки. Последовательное выведение излучения различных длин волн на выходную щель и приемник излучения осуществляется сканирование поворотом призмы или решетки. Источники излучения - накаливаемые электрическим током стержни из различных материалов. Приемники: чувствительные термопары, металлические и полупроводниковые термосопротивления (болометры) и газовые термопреобразователи, нагрев стенки сосуда которых приводит к нагреву газа и изменению его давления, которое фиксируется. Выходной сигнал имеет вид обычной спектральной кривой.

Достоинства приборов классической схемы: простота конструкции, относительная дешевизна. Недостатки: невозможность регистрации слабых сигналов из-за малого отношения сигнал: шум, что сильно затрудняет работу в далекой инфракрасной области; сравнительно невысокая разрешающая способность (до 0,1 см-1), длительная (в течение нескольких минут) регистрация спектров.

В фурье-спектрометрах отсутствуют входная и выходная щели, а основной элемент - интерферометр. Поток излучения от источника делится на два луча, которые проходят через образец и интерферируют. Разность хода лучей варьируется подвижным зеркалом, отражающим один из пучков.

Блок-схема фурье-спектрометра:

1 – источник излучения; 2 – прерыватель; 3 – светоделитель; 4 – подвижное зеркало;

5 – неподвижное зеркало; 6 – система линз; 7 – кюветное отделение;

8 – детектор; 9 – аналого-цифровой преобразователь; 10 – контроллер;

11 – компьютер; 12 – цифровая печать; 13 – дисковая память.

Первоначальный сигнал зависит от энергии источника излучения и от поглощения образца и имеет вид суммы большого числа гармонических составляющих. Для получения спектра в обычной форме производится соответствующее фурье-преобразование с помощью встроенной ЭВМ.

Наиболее эффективное использование оборудования для инфракрасной Фурье спектроскопии возможно только при соответствующей подготовке пробы, предназначенной для анализа. При работе на инфракрасных Фурье спектрометрах можно использовать как традиционные способы пробоподготовки для инфракрасной спектроскопии, так и некоторые новые приемы, которые обусловлены прежде всего меньшим количеством вещества, достаточным для анализа и возможностью использования дополнительных устройств (приставок).

Достоинства фурье-спектрометра: высокое отношение сигнал: шум, возможность работы в широком диапазоне длин волн без смены диспергирующего элемента, быстрая (за секунды и доли секунд) регистрация спектра, высокая разрешающая способность (до 0,001 см-1). Недостатки: сложность изготовления и высокая стоимость.

Все спектрофотометры снабжаются ЭВМ, которые производят первичную обработку спектров: накопление сигналов, отделение их от шумов, вычитание фона и спектра сравнения (спектра растворителя), изменение масштаба записи, вычисление экспериментальных спектральных параметров, сравнение спектров с заданными, дифференцирование спектров и др. Кюветы для инфракрасных спектрофотометров изготовляют из прозрачных в инфракрасной области материалов. В качестве растворителей используют обычно ССl4, СНСl3, тетрахлорэтилен, вазелиновое масло. Твердые образцы часто измельчают, смешивают с порошком КВr и прессуют таблетки. Для работы с агрессивными жидкостями и газами применяют спец. защитные напыления (Ge, Si) на окна кювет. Мешающее влияние воздуха устраняют вакуумированием прибора или продувкой его азотом.

Для случая слабо поглощающих веществ (разреженные газы и др.) применяют многоходовые кюветы, в которых длина оптического пути достигает сотен метров благодаря многократным отражениям от системы параллельных зеркал. Большое распространение получил метод матричной изоляции, при котором исследуемый газ смешивают с аргоном, а затем смесь замораживают. В результате полуширина полос поглощения резко уменьшается, и спектр получается более контрастным. Применение специальной микроскопической техники позволяет работать с объектами очень малых размеров (доли мм).

Подготовку твердых образцов для регистрации их инфракрасных спектров осуществляют двумя способами:

1. Суспензионный метод представляет собой растирание образца до мелкодисперсного состояния (размер частиц 2-7 мкм) и приготовление суспензии в иммерсионной жидкости с близким к образцу показателем преломления. При этом в качестве матрицы обычно используют вазелиновое масло, фторированные или хлорированные масла. Полученная полупрозрачная паста наносится с помощью шпателя на окно из оптического материала в виде тонкой равномерной пленки.

Наиболее часто в экспертной практике в качестве иммерсионной жидкости используется вазелиновое масло. Однако, спектр вазелинового масла имеет полосы поглощения в областях 2900, 1460, 1380 и 725 см-1. Эти полосы накладываются на полосы поглощения образца, компенсировать их можно либо с помощью кюветы сравнения, либо путем вычитания спектра вазелинового масла из суммарного спектра. На практике перфторуглеводородное масло используют при исследовании веществ в области 4000-1500 см-1 (не поглощает фторированное масло), а вазелиновое масло – для исследования в области 1500-400 см-1 (мало поглощает вазелиновое масло).

2. Прессование таблеток с галогенидами щелочных металлов – основной и наиболее универсальный способ пробоподготовки. Он заключается в тщательном перемешивании в агатовой ступке тонкоизмельченного образца с порошком KBr и последующем прессовании смеси в пресс - форме, в результате чего получается прозрачная или полупрозрачная таблетка. Для получения качественных спектров степень диспергирования вещества должна достигать размера частиц 2-7 мкм (сопоставимо с длиной волны инфракрасного излучения).

Иногда для облегчения растирания добавляют несколько капель перегнанного растворителя (четыреххлористого углерода или гексана), который испаряется при последующем растирании. Наилучшие результаты получаются при вакуумировании пресс - формы, что позволяет избавиться от включений воздуха в таблетки. Для таблеток можно использовать бромид калия для спектроскопии или квалификации не ниже химически чистого, но предварительно высушенный от воды. Сушку бромида калия следует проводить при t ≈ 600оС в течение не менее 6 часов и хранить его в эксикаторе с осушителем. Проводить такую тщательную подготовку необходимо, так как в противном случае получаемый спектр будет иметь широкие полосы адсорбированной воды в областях 3450 и 1630 см-1.

С таблеток диаметром 3, 5, 7 мм и более можно регистрировать спектр без дополнительных устройств. Таблетки диаметром 1 и 2 мм необходимо исследовать с использованием микрофокусировочного устройства. Если пресс – форма не позволяет получать таблетки диаметром 1-3 мм, то можно использовать специально изготовленный, например, из картона, круглый вкладыш с вырезанным в центре отверстием соответствующего диаметра. Таблетки диаметром 1-3 мм используют при исследовании микроколичеств (до 10-9 г) вещества.

Метод прессования таблеток с KBr целесообразно использовать для образцов, которые нерастворимы в обычных растворителях, аморфны или имеют устойчивую кристаллическую структуру и не содержат ионов, способных к обмену.

Использование инфракрасной спектроскопии в исследовании структуры воды

Известно, что ядра молекул вдали от фиксированных положений по отношению друг к другу находятся в непрерывном колебательном состоянии. Важная особенность этих колебаний в том, что они могут быть описаны ограниченным числом основных колебаний (нормальные моды). Нормальной модой называется колебание, при котором ядра осциллируют с одинаковой частотой и в одной фазе. Молекулы воды имеют три нормальные моды.


К-во Просмотров: 701
Бесплатно скачать Реферат: Инфракрасная спектроскопия