Реферат: Интегральное исчисление. Исторический очерк

Готфрид Вильгельм Лейбниц родился в Германии в г. Лейпциге в 1646 г. Любознательный мальчик уже 6 лет вел интересные беседы по истории со своим отцом, профессором Лейпцигского университета. К 12 годам он хорошо изучил латинский язык и увлёкся древнегреческим. Особенно его интересовали древние философы, и он мог подолгу размышлять о философских теориях Аристотеля или Демокрита. В 15 лет Лейбниц поступает и Лейпцигский университет, где усердно изучает право и философию. Он очень много читает, среди его любимых книг - книги Р. Декарта, Г. Галилея, II. Кеплера и Д. Кампанеллы.

Свои колоссальные знания но математике Лейбниц приобрел самоучкой. Через три года, окончив университет, Лейбниц покинул Лейпциг. Он был обижен отказом ученого совета университета присвоить ому степень доктора прав. Отказ объяснили тем. что Лейбниц был... слишком молод!

Началась жизнь, полная напряженного труда и многочисленных путешествии. Легко себе представить, как неудобны были путешествовать в неуклюжих каретах по тряским дорогам Европы тех времен. Лейбниц умел не терять времени даром - много удачных мыслей пришло ему и голову именно во время этих продолжительных поездок. Лейбниц отличался исключительной способностью быстро “входить” и задачу и решать ее наиболее общим способом. Размышляя над философскими и математическими вопросами, Лейбниц убедился, что самым надежным средством искать и находить истину в науке может стать математика. Всю спою сознательную жизнь он стремился выразить законы мышления, человеческую способность думать и виде математического исчисления. Для этого необходимо, учил Лейбниц, уметь обозначать любые понятия или идеи определенными символами, комбинируя их в особые формулы, и сводить правила мышления к правилам в вычислениях но этим символическим формулам. Заменяя oбычные слова четко определенными символами, Лейбниц стремился избавить наши рассуждения от всякой неопределенности и возможности ошибиться самому или вводить в заблуждение других. Если, мечтал Лейбниц. между людьми возникнут разногласия, то решаться они будут не в длинных и утомительных спорах. а так, как решаются задачи или доказываются теоремы. Спорщики возьмут в руки перья и, сказав: “Начнем вычислять” - примутся за расчеты.

Как уже отмечалось, Лейбниц одновременно с Ньютоном и независимо от него открыл основные принципы дифференциального и интегрального исчислений. Теория приобрела силу после того, как Лейбницем и Ньютоном было доказано, что дифференцирование и интегрирование - взаимно обратные операции. Об этом свойстве хороню знал и Ньютон. Но только Лейбниц увидел здесь ту замечательную возможность, которую открывает применение символического метода.

Любой человек, изучив небольшое число правил действия с символами, обозначающими операции дифференцирования и интегрирования, становится обладателем мощного математического метода. В наше время такие символы операций называют операторами. Операторы дифференцирования d( ) и интегрирования действуют на функции, “перерабатывая” их в другие, точно вычисляемые функции. Лейбниц разрабатывает особую алгебру действий с этими операторами. Он доказывает, что обычное число а можно выносить за знак оператора:

Одинаковые операторы можно выносить за скобку:

или:

Сокращенно все перечисленные свойства можно выразить соотношением:

где: a и b - числа.

Операторы. которые обладают таким свойством. называются линейными. Теория линейных операторов, которую с таким успехом начал развивать, Лейбниц,. в современной математике является хорошо разработанной и полезной в приложениях теорией.

Многократное применение операторов можно принимать как степень оператора, например, для d( ):

То, что основные операторы математического анализа являются взаимно обратными Лейбниц подчёркивал своей символикой, утверждая, что в d(x) и также взаимно обратны, как степени и корни в обычном исчислении. Употребляя так же обозначение, аналогичное обозначению a-1 числа, обратного a, причём произведение a×a-1=1. Обозначая операторы или наоборот:

и понимая под их произведением последовательное их применение, имеем:

т. е. произведение есть “единица”, не меняющая функцию.

Однако, в подходе Ньютона-Лейбница крылось серьёзное противоречие.

Лейбниц и его последователи - братья Бернулли, Лопиталь и другие - трактовали дифференциалы как бесконечно малые разности обычных конечных величин, как тогда говорили - “реальных” величин “низшей” математики. Поэтому они обращались с теми и другими одинаково и в исчислении применяли к первым те же приемы, которые справедливы при действиях со вторыми. Вместе с тем выяснилось, что таким образом трактуемым бесконечно малым присуще свойство, противоречащее одному основному свойству основных конечных величин: если А — конечная величина, а a — бесконечно малая, то, чтобы результат исчисления получался совершенно точным, оказалось необходимым проводить вычисления в предположении, что А+a=А.

Дифференциальное исчисление, значение которого для развития науки и техники было вне сомнений, оказалось в парадоксальном положении: чтобы его методами получить точный результат, надо было исходить из ошибочного утверждения.

Ньютон пытался обосновать дифференциальное исчисление на законах механики и понятии предела. Но ему не удалось освободить свое исчисление флюксий от недостатков, присущих дифференциальному исчислению Лейбница. В практике вычисления Ньютон, как и Лейбниц, применял принцип отбрасывания бесконечно малых.

Такая непоследовательность позволила назвать дифференциальное исчисление Лейбница–Ньютона мистическим. Этим в первую очередь подчеркивалось, что Лейбниц и Ньютон вводили в дифференциальное исчисление бесконечно малые величины метафизически, сразу полагая их существующими, без выяснения их возникновения и развития и без анализа природы их специфических свойств.

Попытки построить анализ бесконечно малых и теорию рядов в полном соответствии с основными понятиями и истинами “низшей” математики с самого начала к успешным результатам не привели. Поэтому Лейбниц и его последователи пытались оправдать принципы анализа бесконечно малых путем сравнения бесконечно малой с песчинкой, которой можно пренебречь при вычислении высоты горы, посредством ссылок на вероятность и т. п.

Другая попытка была предпринята в конце XVIII века. Известный немецкий математик Вессель предложил оставить анализ бесконечно малых в анализе в качестве “полезных вспомогательных функций”. Однако, такая трактовка широкого распространения не получила - математики знали механическое и геометрическое истолкование dx и dy.

Примерно с последней четверти XVIII века область приложений математического анализа начинает значительно перекрывать границы его обычного приложения в механике и геометрии. Ещё быстрее развертывается этот процесс в первой четверти XIX века.

К-во Просмотров: 441
Бесплатно скачать Реферат: Интегральное исчисление. Исторический очерк