Реферат: Інтегровані типи д-р 1-го порядку розвязаних відносно похідної
Пр.2.9 Знайти загальний розв’язок ДР
Це лінійне однорідне ДР .
Пр.2.10 Розв’язати ДР .
За формулою (2.71)
д) Рівняння Бернуллі Це рівняння має вигляд (2.74)
Рівняння (2.74) завжди інтегрується в квадратурах шляхом підстановки (2.75). Так як , то домножимо (2.74) на , маємо (2.76) яке вже являється лінійним.
Прирівняння Бернуллі має особливий розв’язок. При розв’язок міститься в загальному розв’язку при. При не являється розв’язком ДР (2.74)
Пр.2.11 Розв’язати ДР , , ,. Отже - загальний розвязок нашого р-ня.
Відомо, що деференц. – ліннійне р-ня.
Р-ня зводиться до лінійного заміною.