Реферат: Інтегрування деяких рівнянь другого порядку шляхом пониження порядку рівняння

(12.32)

де - довільні сталі, а - лінійно незалежні розв’язки рівняння (12.31).

Рівняння (12.31) має і тільки лінійно незалежних розв’язків, сукупність яких називається фундаментальною системою розв’язків рівняння (12.31).

Зауваження. Якщо відомо частинних лінійно незалежних розв’язків лінійного однорідного диференціального рівняння (12.31), то порядок рівняння можна понизити на одиниць. Зокрема, якщо відомий один частинний розв’язок лінійного однорідного рівняння другого порядку, то загальний розв’язок може бути знайдений квадратурами (тобто інтегруванням).

3. Лінійне неоднорідне рівняння

Розглянемо деякі властивості рівняння (12.30а).

10 . Загальний розв’язок лінійного неоднорідного рівняння (12.30а) є сумою якого-небудь його частинного розв’язку та загального

розв’язку відповідного однорідного рівняння (12.31а) :

(12.33)

Справді, є розв’язком рівняння (12.30а), оскільки - лінійний оператор і (за умовою):

Доведемо, що вираз (12.33) є загальним розв’язком рівняння (12.30а).

Для цього покажемо, що довільні сталі , які входять у цей розв’язок, можна підібрати так, щоб виконувались початкові умови

. (12.34)

Справді, оскільки з умов (12.34) одержуємо

Це лінійна система алгебраїчних рівнянь відносно , головний визначник якої є визначником Вронського для функцій при . За умовою ці функції лінійно незалежні і, отже , визначник Вронського відмінний від нуля. Таким чином, система має єдиний розв’язок , якому відповідає розв’язок задачі Коші (12.30а) , (12.34). Властивість доведено.

20 . Якщо відомий загальний розв’язок рівняння (12.31а), то загальний розв’язок рівняння (12.30а) можна знайти методом варіації довільних сталих Лагранжа за допомогою квадратур.

Справді, будемо шукати розв’язок неоднорідного рівняння (12.30а) у формі

(12.35)

де - поки що невідомі функції від .

Тоді для визначення похідних від будемо мати систему алгебраїчних рівнянь

(12.36)

Покажемо доведення цієї системи на прикладі диференціального рівняння другого порядку

Нехай загальний розв’язок лінійного однорідного рівняння

Частинний розв’язок неоднорідного рівняння шукатимемо у вигляді Диференціюючи, одержимо

К-во Просмотров: 143
Бесплатно скачать Реферат: Інтегрування деяких рівнянь другого порядку шляхом пониження порядку рівняння