Реферат: Інтегрування раціональних функцій

Використовуючи рекурентну формулу, зведеться до суми правильного раціонального дробу і з деяким числовим множником . Якщо (8.22) проінтегрувати і додати всі дроби раціональної частини інтеграла, одержимо правильний дріб вигляду , де

, а - поліном, степінь якого буде меншим, ніж степінь полінома в знаменнику. Тому

, (8.23)

де - теж раціональний дріб, усі множники знаменника якого

або лінійні, або квадратні в першому степені, або їх комбінації, причому .

Із (8.23) знаходимо

(8.24)

Тут поліноми і - невідомі, степені їх треба брати на одиницю меншими, ніж степені в знаменнику, при цьому їх треба записувати з невизначеними коефіцієнтами, які знаходять так само, як і в разі розкладу раціонального дробу на прості дроби. Але перш, ніж звільнитися від дробів у (8.24), треба скоротити дріб, одержаний від диференціювання, на спільні множники чисельника і знаменника, якщо у знаменнику були степені множників більші за одиницю. У всіх випадках після диференціювання знаменник дробу повинен дорівнювати .

Приклад.

.

Р о з в ‘ я з о к. Підінтегральну функцію, користуючись формулою (8.24), подамо у вигляді

де - невідомі числа.

Розглянемо дріб ,

де .

Тоді

Тут здійснено скорочення на . Якщо цього не зробити, то далі виникнуть труднощі, викликані тим, що отримаємо систему рівнянь, в якій буде більше рівнянь, ніж невідомих коефіцієнтів.

Для визначення невідомих коефіцієнтів одержимо таку систему рівнянь:

Із цієї системи знаходимо:

На підставі формули (8.24) матимемо

Інтеграл у правій частині цієї рівності знаходять точно так само, як це було зроблено в попередньому прикладі. Пропонується довести цю роботу до кінця.

Методом Остроградського можна користуватися в разі інтегрування правильного раціонального дробу, знаменник якого має кратні корені

К-во Просмотров: 197
Бесплатно скачать Реферат: Інтегрування раціональних функцій