Реферат: Ионная имплантация
Аморфизация поверхностного слоя, его легирование позволяют реализовать уникальное сочетание физико-механических свойств, в частности высокой твердости и пластичности одновременно. После ионной имплантации очень значительно возрастает коррозионная стойкость стали. Под действием ионной имплантации возможны существенные изменения в кристаллической решетке материала мишени, в ряде случаев в поверхностных слоях происходят полиморфные превращения.
При рассмотрении особенностей ионной имплантации выделяют три энергетических диапазона ионов:
- диапазон низких энергий, Е » 100…1000 эВ;
- диапазон средних энергий, 104< Е<106 эВ;
- диапазон высоких энергий, Е>106 эВ.
Наиболее перспективно применение ионной имплантации средних энергий. Высокоэнергетическая имплантация требует применения дорогостоящего оборудования и, как правило, экономически невыгодна. Низкоэнергетическая имплантация может быть использована при обработке машиностроительных материалов только в сочетании с высокотемпературным отжигом. Отжиг проводится в вакууме с целью интенсификации диффузионных процессов.
На практике получили распространение следующие разновидности ионной имплантации.
1) Ионная имплантация атомами отдачи. В этом случае на поверхность обрабатываемой детали, как правило, методом испарения в вакууме наносится тонкое покрытие из легирующего элемента. При обработке покрытия первичными ионами происходит передача атомам покрытия кинетической энергии и внедрение их в поверхностный слой обрабатываемой детали. Одновременно идет частичное распыление покрытия. Данный метод универсален, т.к. с использованием ионов одного сорта, например, ионов инертного газа и покрытий из различных материалов предоставляется возможность легировать поверхностный слой различными элементами. Основной недостаток данного метода – необходимость постоянного восстановления покрытия из-за его распыления в процессе обработки.
2) Ионная имплантация в условиях ионного перемешивания. При реализации данного метода обработка поверхности ионами инертного газа и осаждение ионов легирующего элемента на поверхность детали происходят одновременно.
Разнообразие технологических приемов, используемых при ионной имплантации, позволяет в широких пределах изменять химический состав и структуру слоев. Основной особенностью ионной имплантации является то, что после её проведения практически не изменяются размеры детали и её можно применять после чистовой прецизионной обработки.
После ионной имплантации в поверхностном слое образуются напряжения сжатия, которые снижают тенденцию к возникновению и развитию трещин в поверхностных слоях, что также способствует повышению эксплуатационных свойств обработанных изделий.
При имплантации ионов азота и углерода в поверхностных слоях образуются карбиды и нитриды металлов, значительно повышающие твердость и износостойкость деталей. Одним из эффективных применений ионной имплантации является использование ее для получения антифрикционной керамики. Если необработанная керамика имеет коэффициент трения fтр=0,3...0,6, то после ионной имплантации –fтр=0,05...0,1. Для повышения сопротивления усталости рекомендуются следующие режимы ионной имплантации: доза облучения D=1017ион/см2, энергия ионов Е=100...200 кэВ, температура поверхности 200 0С.
Наибольшее распространение ионная имплантация получила при обработке режущего инструмента. Ее проведение позволяет повысить износостойкость в десятки раз. В Западной Европе 20...25 % выпускаемых пресс-форм подвергаются ионной имплантации. Обработка ионами азота и углерода ножей для резки резины, ленточных пил, винтов вертолетов, ответственных узлов реактивных двигателей позволяет повысить их долговечность в 10…80 раз.
Список использованных источников
1. Камаров Ф. Ф. Ионная имплантация в металлы. М.: Наука и техника, 1980. –164 с.
2. Белый А. В., Карпенко Г. Д., Мышкин Н. К. Структура и методы создания износостойких поверхностных слоев. М.: Наука и техника, 1991. –175 с.
3. Белый А. В., Кукареко В.А., Лободаева О. В., Таран И. И., Ших С. К. Ионно-лучевая обработка металлов, сплавов и керамических материалов. Мн.: Наука и техника, 1997. –185 с.
4. Научно-технический прогресс в машиностроении. Современные методы упрочнения поверхностей деталей машин/Под ред. Фролова К.В. –М.: Институт машиноведения АН СССР, 1989. – 286 С.
5. Белый А. В., Симонов А. В., Ших С. К. Применение ионного легирования для повышения эксплуатационных характеристик деталей машин и оборудования. Мн.: БелНИИТИ, 1985. – 44 с.