Реферат: Ишемическая болезнь сердца: стенокардия напряжения (стабильная) III степени. Гипертоническая болезнь: III стадии, 3 степени
Прямой билирубин 2,4 мкмоль/л
Непрямой билирубин 8,4 мкмоль/л
АЛТ – 0,30 мкмоль/л
АСТ – 0,20 мкмоль/л
Общий холестерин – 3,71 ммоль/л
В-липопротеиды – 39 ед.
Фибриноген – 3000 г./л
ПТИ 94%
8. ЭКГ (20.03.08):
Заключение:
Окулист: Глазное дно: ДЗН бледно-розовые, четкие, бледные с височных половин, артерии сужены, склероз, вены расширены, извиты.
Salus 1–11.
DS: Ангиоретинопатия сосудов смешанного типа.
Клинический диагноз
Предварительный диагноз подтверждается следующими дополнительными методами исследования: ЭКГ, Эхокардиография, биохимический анализ крови, 6-минутный тест:
¨ Подтверждается выделенный синдром гипертрофии левого желудочка: по ЭКГ (электрическая ось сердца отклонена влево. Блокада передней ветви ЛНПГ. Гипертрофия левого желудочка), по ЭХОкг (небольшое снижение сократимости левого желудочка. Минимальная митральная регургитация. Небольшая аортальная регургитация. Небольшая относительная трикуспидальная регургитация. Гипертрофия стенок левого желудочка. Атеросклероз аорты).
¨ Изменения на глазном дне (ангиопатия сосудов сетчатки) указывает на поражение сосудов сетчатки – орган-мишень при ГБ.
¨ ХСН 2 го функционального класса, т. к. больной за 6 минут проходит 360 метров.
На основании предварительного диагноза и вышесказанного можно поставить клинический диагноз :
Этиология
Этиология ИБС – это, в первую очередь, этиология атеросклероза. В образовании и развитии атеросклеротической бляшки участвуют три основных фактора: стенка артерии, липиды сыворотки и свертывающая система крови.
Для понимания механизма образования бляшки необходимо представить нормальное строение и функционирование артерии. Артерия состоит из трех четко различающихся слоев. Внутренняя оболочка (tunica intima) – тонкий непрерывный пласт эндотелия, толщиной в одну клетку, выстилающий просвет артерии на всем ее протяжении. При рождении интима содержит единичные гладкомышечные клетки (ГМК), количество которых с возрастом увеличивается. Эндотелиальные клетки находятся на основной – «базальной» – мембране, включающей коллагеновые волокна с особым типом протеогликановых молекул. С возрастом в мембране увеличивается количество коллагена, эластических волокон и интимальных ГМК. В норме плоские эндотелиальные клетки создают барьер, препятствующий попаданию различных веществ из крови в артериальную стенку. Необходимые вещества проникают в клетки посредством специфических транспортных систем. Неповрежденный эндотелий коронарных артерий препятствует образованию сгустков крови за счет выделения ряда простагландинов (простациклин), окиси азота, подавляющих функцию тромбоцитов, способствуя тем самым нормальному кровотоку. Средняя оболочка (tunica media) ограничена внутренней («базальной») и наружной мембраной, которые состоят из фенестрированных элластических волокон, с большим количеством довольно широких каналов, которые позволяют проникать различным веществам в любом направлении. Состоит средняя оболочка из клеток одного типа – спиралеобразных ГМК, прилегающих друг к другу. Каждая из них окружена мембраной, вкраплениями коллагеновых волокон и протеогликанов. ГМК обладают способностью вырабатывать в большом количестве коллаген, эластические волокна, растворимый и нерастворимый эластин, протеогликаны и являются основным источником соединительной ткани в артериальной стенке. Здесь происходит множество анаболических и катаболических процессов. ГМК способны метаболизировать глюкозу посредством как аэробного, так и анаэробного гликолиза. В них содержатся разнообразные катаболические ферменты, включая фибринолизины, оксиданты со смешанными функциями, лизосомные гидролазы. Питание tunica media получает из мелких кровеносных сосудов (vasa vasorum) наружной оболочки, а внутренние слои – непосредственно из просвета сосуда. Наружная оболочка (tunica adventitia) – поверхностный слой артериальной стенки. Со стороны просвета сосуда она ограничена внешней (наружной) эластической мембраной.
Адвентиция является коллагеновой структурой, состоящей, из огромного количества коллагеновых фибрилл, собранных в пучки, элластических волокон и большого количества фибробластов вместе с ГМК. Это высоко васкуляризированная ткань, в том числе, несущая в себе много нервных волокон.
Наряду с указанными процессами, следует учитывать возможности таких физиологических факторов, как процессы переноса через эндотелиальный слой, поступление кислорода и различных субстратов как из просвета сосуда, так и со стороны наружной оболочки, а также обратный ток продуктов метаболизма. Определяемые в сыворотке крови общие липиды состоят из целого ряда отдельных липидов (липоидов). К ним относятся нейтральные жиры (триглицериды), холестерин и фосфолипиды (фосфаты). К классу общих липидов принадлежат жирные кислоты и сфигмомиелин. ХС и ТГ являются основными, циркулирующими в крови липидами. ХС используется в клеточном синтезе и репарации, а также для продукции стероидных гормонов. ТГ используются мышечными клетками в качестве источника энергии и накапливаются в виде жира в жировой ткани. Клетки артериальной стенки способны синтезировать жирные кислоты, холестерин, фосфолипиды и триглицериды, необходимые для удовлетворения своих структурных потребностей (восстановление мембран), используя для этого эндогенные субстраты. Липиды обладают гидрофобными свойствами, нерастворимы в воде и существуют в сыворотке крови только в комплексе с белками. Нерастворимые в воде неэстерифицированные жирные кислоты связаны с альбуминами и этот комплекс растворим в плазме крови. ХС, ТГ, фосфолипиды также связаны с отдельными белковыми компонентами и глобулинов крови и образуют липопротеидные комплексы – липопротеиды (ЛП). Комплексируясь с белковыми молекулами, липиды солюбилизируются и в таком виде транспортируются в кровотоке. В несколько упрощенном виде ЛП можно представить себе как некую сферическую структуру с наружной солюбилизированной оболочкой, состоящей из белка и фосфолипидов с внутренним гидрофобным ядром, сформированным из ТГ и ХС. Белок и фосфолипиды дают липидам растворимость. Связь между находящимся внутри липидом и белковой оболочкой осуществляется за счет слабых водородных связей и является довольно рыхлой. Это позволяет обеспечивать свободный обмен липидов между сывороточными и тканевыми липопротеидами и тем самым осуществлять транспорт липидов в ткани – мишени. Выделено 4 класса основных ЛП: хиломикроны, ЛП низкой плотности (ЛПНП), липопротеиды очень низкой плотности (ЛПОНП) и ЛП высокой плотности (ЛПВП). Такая классификация основана на различиях в поведении ЛП при ультрацентрифугировании и соответствует отдельным фракциям, выявляемым при электрофоретическом анализе. ЛП транспортируют липиды в крови от одного места к другому. Хиломикроны транспортируют ТГ пищи из кишечника к мышцам и жировой ткани. ЛПОНП – транспортируют ТГ, синтезируемые в печени, из печени к мышцам и к жировой ткани. ЛПНП – транспортируют холестерин из печени к периферическим тканям. ЛПВП транспортируют ХС от периферических тканей к печени, причем на этом пути происходит деэстерификация части захваченного из ткани холестерина. Белковая часть носителей липидов обозначается как апопротеины.
В плазме крови содержится около десятка различных апопротеинов, идентифицированных с помощью иммунохимических методов. Каждый из них обозначен латинской буквой (А, В, С, D, Е), а подвид – добавочным цифровым выражением (апо-С-1, апо-А-2 и т.д.). Общим для всех ЛП является включение в их состав всех основных липидов, количество которых и размер частиц у отдельных ЛП значительно варьируют. Апо-липопротеины обеспечивают растворимость липидов. Они располагаются на поверхности липопротеидов. Апопротеины обычно функционируют как лиганды для связывания с рецепторами или в качестве кофакторов для ферментов. Апо-С-II – кофактор для липопротеиновой липазы, которая удаляет триглицериды из хиломикронов и ЛПОНП, оставляя фрагменты частиц. Апо-Е – связывается с рецепторами печени, предназначенными для оставшихся частиц. Апо-В-связывается с периферическими и печеночными рецепторами, предназначенными для ЛПНП. Апо-А – связывается с периферическими рецепторами, предназначенными для ЛПВП. Так разумно и рационально функционирует система, обеспечивающая стабильность липидного обмена в норме.
Эндотелиальные клетки обладают уникальными свойствами. Особенности строения их мембран и целый ряд выделяемых ими веществ (простациклин, NO и др.) препятствуют активации свертывающей системы крови, происходящей на любой другой поверхности. Кровь циркулирует в жидком состоянии до тех пор, пока сохраняется целостность эндотелия, покрывающего внутреннюю поверхность сосуда. В эндотелии синтезируются вещества, необходимые для адгезии тромбоцитов, стимуляторы и ингибиторы фибринолиза и вещества, играющие важнейшую роль в регуляции тонуса сосуда.
Если клетки эндотелия повреждаются, то обнажается субэндотелий: базальная мембрана, коллагеновые и эластичные волокна, фибробласты, гладкомышечные клетки. Контакт с поврежденными эндотелиальными клетками, активирует свертывающую систему крови сразу в нескольких направлениях – стимулируется тромбоцитарный гемостаз, внутренний и внешний пути плазменного гемостаза. Тромбоциты первыми реагируют на любое повреждение эндотелия, поэтому образование тромбоцитарного тромба называется первичным гемостазом. В начале тромбоциты адгезируются к субэндотелию. Для этой реакции необходим фактор Виллебранда – крупномолекулярный белок, вырабатываемый эндотелием и содержащийся в субэндотелии плазмы и тромбоцитов. Тромбоциты прикрепляются к поврежденному эндотелию. В процессе активации тромбоциты выделяют гранулы с активными веществами, такими как АДФ, адреналин, тромбоксан А2, тромбоцитарный фактор роста и др. Эти вещества вызывают сразу две реакции: провоцируют спазм сосуда и стимулируют агрегацию тромбоцитов. Агрегаты тромбоцитов соединяются между собой, образуя единую сеть актомиозиновых волокон, которые позднее сокращаются, обеспечивая уплотнение всего тромба (ретракция кровяного сгустка). Агрегация тромбоцитов обычно происходит локально и ограничивается местом повреждения эндотелия. Этому способствует то, что в здоровых участках эндотелия вырабатывается простациклин, который вызывает дилатацию сосудов и является мощным дезагрегантом. Одновременно с тромбоцитарным активируется и плазменный гемостаз. Его конечным этапом является образование плотных нерастворимых нитей фибрина, укрепляющих тромбоцитарный тромб. Конечный этап свертывания запускается двумя путями: внешним и внутренним. При небольших повреждения активируется прежде всего внутренний путь свертывания. Он запускается контактом с XII фактором. Большинство факторов свертывания, включая XII, в активном состоянии являются протеазами, отщепляющими часть молекулы от следующего фактора, переводя его из неактивного состояния в активное. При этом каждый раз в реакцию вовлекается все большее число молекул (так называемый принцип каскада). XII фактор активирует, таким образом, XI, а тот в свою очередь, IX. Активный IX фактор при участии фосфолипидов, VIII фактора свертывания и кальция, отщепляет часть молекулы от X фактора, переводит его тоже в активное состояние. На этом этапе заканчивается разделение внутреннего и внешнего путей свертывания и начинается его конечный этап. Повреждение клеток сопровождается выделением тканевого тромбопластина. Тромбопластин, связываясь с VII фактором свертывания, переводит его в активное состояние. Активированный VIII фактор напрямую вызвает активацию X фактора. На этом заканчивается внешний путь свертывания. Активированный VII фактор способен активировать X фактор не только напрямую, но и опосредованно через активацию IX фактора, что образует «мостик» между внешним и внутренним путями свертывания. Таким образом, и внутренний, и внешний путь свертывания заканчивается на одном и том же – на образовании активного X фактора. Далее начинается конечный этап свертывания, общий для двух путей. Он состоит из двух основных реакций. Первая – образование тромбина и его неактивного предшественника – протромбина. Активный X фактор свертывания (сериновая протеаза) при участии V фактора и фосфолипидов, расщепляет протромбин на два фрагмента, одним из которых является тромбин. Вторая реакция – тромбин, также являющийся протеазой, отщепляет небольшие фрагменты от молекулы фибриногена. Остатки этой молекулы, называемые фибринмономерами, начинают полимеризоваться, образуя длинные сети фибрина, в которые вовлекаются эритроциты. Одновременно тромбин активирует еще XIII фактор (фибринстабилизирующий), который в нескольких местах сшивает между собой различные нити фибрина, делая тромб более устойчивым. На этом заканчивается плазменный гемостаз. Разделение на плазменный и тромбоцитарный гемостаз является достаточно условным. Реакции, участвующие в образовании фибрина, протекают, главным образом, на мембранах тромбоцитов и эндотелиальных клеток. Фосфолипиды мембран катализируют многие реакции плазменного гемостаза. В случае повреждения эндотелиального слоя тромбоциты адгезируются на его поверхности, продуцируя простагландины другого клана, тромбоксаны, и формируют кровяной сгусток. При этом эндотелиальные клетки участвуют и в процессе образования сгустка, вырабатывая необходи