Реферат: Искуственный интелект
Выполнила:
Студентка 106 гр. Заочного отделения спец. маркетинг
Кандратьева Марина
Проверила:
Ефремова Л.И.
Саранск 2008 г.
Оглавление
1. Введение в искусственный интеллект
2. Основные направления исследований в области искусственного интеллекта
3. Искусственный интеллект как – научное направление
4. Современные технологии искусственного интеллекта
Заключение
Список используемых источников
1. Введение в искусственный интеллект
Понятие "интеллект" впервые возникло в психологии. Психологи считают, что интеллект - это "свойство личности, выражающееся в способности глубоко и точно отражать в сознании предметы и явления объективной действительности в их существенных связях и закономерностях, а также в творческом преобразовании опыта ... (и) ... система ориентировки на существенные отношения решаемой задачи ... . Стадия интеллекта (или "ручное мышление") есть высшая ступень развития психики животных, (а) ... ядро ... собственно интеллекта составляет способность выделить в ситуации ее существенные для действия свойства в их связях и отношениях и привести свое поведение в соответствие с ними".
В настоящее время известны различные, порой даже противоречивые, толкования понятия: "искусственный интеллект". Приведем некоторые из них. Итак, искусственный интеллект - это создание таких программ для вычислительных машин, поведение которых назвали "разумным", если бы обнаружили его у людей.
Искусственный интеллект будет реализован лишь тогда, когда неодушевленная машина сможет решить задачи, которые до сих пор не удавалось решить человеку, - не вследствие большей скорости и точности машины, а в результате ее способности найти новые методы для решения имеющейся задачи.
Термин "искусственный интеллект" употребляется в двух различных смыслах. Во-первых, под этим термином понимают определенное научное направление, а во-вторых, этот термин используется как название для систем и объектов, на разработку которых и нацелены проводимые исследования.
Искусственный интеллект как наука существует около полувека. Это направление информатики - самое молодое, возникшее в середине 70-х годов. Первой интеллектуальной системой считается программа "Логик-Теоретик", предназначенная для доказательства теорем и исчисления высказываний. Ее работа впервые была продемонстрирована 9 августа 1956 г. В создании программы участвовали такие известные ученые, как А. Ньюэлл, А. Тьюринг, К. Шеннон, Дж. Лоу, Г. Саймон и др. За прошедшее с тех пор время в области искусственного интеллекта разработано великое множество компьютерных систем, которые принято называть интеллектуальными. Области их применения охватывают практически все сферы человеческой деятельности, связанные с обработкой информации.
2. Основные направления исследований в области искусственного интеллекта
Интеллектуальные информационные системы проникают во все сферы нашей жизни, поэтому трудно провести строгую классификацию направлений, по которым ведутся активные и многочисленные исследования в области искусственного интеллекта. Рассмотрим кратко некоторые из них.
Разработка интеллектуальных информационных систем или систем, основанных на знаниях. Это одно из главных направлений искусственного интеллекта. Основной целью построения таких систем являются выявление, исследование и применение знаний высококвалифицированных экспертов для решения сложных задач, возникающих на практике. При построении систем, основанных на знаниях, используются знания, накопленные экспертами в виде конкретных правил решения тех или иных задач. Это направление преследует цель имитации человеческого искусства анализа неструктурированных и слабоструктурированных проблем. В данной области исследований осуществляется разработка моделей представления, извлечения и структурирования знаний, а также изучаются проблемы создания баз знаний, образующих ядро систем, основанных на знаниях. Частным случаем систем, основанных на знаниях являются экспертные системы.
Разработка естественно-языковых интерфейсов и машинный перевод. Проблемы компьютерной лингвистики и машинного перевода разрабатываются в искусственном интеллекте с 1950-х гг. Системы машинного перевода с одного естественного языка на другой обеспечивают быстроту и систематичность доступа к информации, оперативность и единообразие перевода больших потоков, как правило, научно-технических текстов. Системы машинного перевода строятся как интеллектуальные системы, поскольку в их основе лежат базы знаний в определенной предметной области и сложные модели, обеспечивающие дополнительную трансляцию "исходный язык оригинала - язык смысла - язык перевода". Они базируются на структурно-логическом подходе, включающем последовательный анализ и синтез естественно-языковых сообщений. Кроме того, в них осуществляется ассоциативный поиск аналогичных фрагментов текста и их переводов в специальных базах данных. Данное направление охватывает также исследования методов и разработку систем, обеспечивающих реализацию процесса общения человека с компьютером на естественном языке (так называемые системы ЕЯ-общения).
Генерация и распознавание речи. Системы речевого общения создаются в целях повышения скорости ввода информации в ЭВМ, разгрузки зрения и рук, а также для реализации речевого общения на значительном расстоянии. В таких системах под текстом понимают фонемный текст (как слышится).
Обработка визуальной информации. В этом научном направлении решаются задачи обработки, анализа и синтеза изображений. Задача обработки изображений связана с трансформированием графических образов, результатом которого являются новые изображения. В задаче анализа исходные изображения преобразуются в данные другого типа, например в текстовые описания. При синтезе изображений на вход системы поступает алгоритм построения изображения, а выходными данными являются графические объекты (системы машинной графики).
Обучение и самообучение. Эта актуальная область искусственного интеллекта включает модели, методы и алгоритмы, ориентированные на автоматическое накопление и формирование знаний с использованием процедур анализа и обобщения данных. К данному направлению относятся не так давно появившиеся системы добычи данных (Data-mining) и системы поиска закономерностей в компьютерных базах данных (Knowledge Discovery).
Распознавание образов. Это одно из самых ранних направлений искусственного интеллекта, в котором распознавание объектов осуществляется на основании применения специального математического аппарата, обеспечивающего отнесение объектов к классам, а классы описываются совокупностями определенных значений признаков.
Игры и машинное творчество. Машинное творчество охватывает сочинение компьютерной музыки, стихов, интеллектуальные системы для изобретения новых объектов. Создание интеллектуальных компьютерных игр является одним из самых развитых коммерческих направлений в сфере разработки программного обеспечения. Кроме того, компьютерные игры предоставляют мощный арсенал разнообразных средств, используемых для обучения.
Программное обеспечение систем искусственного интеллекта. Инструментальные средства для разработки интеллектуальных систем включают специальные языки программирования, ориентированные на обработку символьной информации (LISP, SMALLTALK, РЕФАЛ), языки логического программирования (PROLOG), языки представления знаний (OPS 5, KRL, FRL), интегрированные про-граммные среды, содержащие арсенал инструментальных средств для создания систем ИИ (КЕ, ARTS, GURU, G2), а также оболочки экспертных систем (BUILD, EMYCIN, EXSYS Professional, ЭКСПЕРТ), которые позволяют создавать прикладные ЭС, не прибегая к программированию.
Новые архитектуры компьютеров. Это направление связано с созданием компьютеров не фон-неймановской архитектуры, ориентированных на обработку символьной информации. Известны удачные промышленные решения параллельных и векторных компьютеров, однако в настоящее время они имеют весьма высокую стоимость, а также недостаточную совместимость с существующими вычислительными средствами.
Интеллектуальные роботы. Создание интеллектуальных роботов составляет конечную цель робототехники. В настоящее время в основном используются программируемые манипуляторы с жесткой схемой управления, названные роботами первого поколения. Несмотря на очевидные успехи отдельных разработок, эра интеллектуальных автономных роботов пока не наступила. Основными сдерживающими факторами в разработке автономных роботов являются нерешенные проблемы в области интерпретации знаний, машинного зрения, адекватного хранения и обработки трехмерной визуальной информации.
3. Искусственный интеллект как – научное направление
Определить искусственный интеллект как научное направление - это значит, прежде всего, определить предмет и метод искусственного интеллекта.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--