Реферат: Исследование допробойных оптико-акустических эффектов в экспериментах с аэрозольными средами
Рис. 3. Результат восстановления акустических импульсов, генерируемых МЛП (а), и их частотных спектров (б) для различных значений плотности лазерной энергии: d = 30 м, T = 291 0С, g = 71%
Учитывая, что большинство пучков МЛИ близки к аксиально симметричным можно лишь приближенно оценить распределение плотности энергии МЛИ по пучку, не решая строгую обратную задачу вычислительной реконструктивной томографии.
На рис. 3 показан результат восстановления термооптических сигналов с использованием ПЭС «Атмосферная оптоакустика», генерируемых МЛП и регистрируемых удаленным на расстояние 30 м акустическим приемником, с учетом цилиндрической расходимости АВ и линейного поглощения звука. Условия проведения эксперимента аналогичны примеру, представленному на рис. 2.2, за исключением удаленности приемного микрофона от МЛП. Е л - плотность лазерной энергии в области МЛП, эффективной для приемного микрофона. Также как и на рис. 2.2 тонкая кольцеобразная структура МЛП заметна на временных развертках. При увеличении плотности энергии МЛИ в частотном спектре основной максимум, соответствующий поперечному размеру пучка не изменяется, а зависимость акустического давления от плотности энергии Pоказывается практически линейной. Второй максимум соответствует размерам более тонкой внутренней кольцеобразной структуры пучка, а зависимость его амплитуды от плотности энергии имеет явно нелинейный характер. При минимальной плотности энергии этот максимум практически не заметен, т. е. тонкая внутренняя структура пучка практически отсутствует.
По результатам экспериментов, выполненных путем регистрации термооптических ОА-сигналов, генерируемых при распространении МЛИ в допороговом режиме в свободной атмосфере, получена линейная зависимость P- рис. 2.4. Разброс точек на графике обусловлен, во-первых, широким диапазоном вариаций метеосостояний АПС, во-вторых, с неоднородностью распределения энергии лазерного излучения по МЛП и, в-третьих, флуктуациями аэрозольной составляющей атмосферы.
Исследования были выполнены в условиях летней дымки устойчивой, когда аэрозольный коэффициент ослабления лазерного излучения СС0 р а практически был сравним или несколько меньше газового коэффициента поглощения ао р г , который в свою очередь имел значения в пределах:
ОСор г = 0,21 0,23 км-1 .
Е л,еыХ , 3 - Е л,вХ - Е л,вых. T = 283 + 292 g = 80 + 96 %
Рис. 4. Зависимость максимального звукового давления в термооптическом сигнале от энергии лазерного излучения: 1 - на выходе фокусирующей системы МЛИ Елвх, 2 - в конце трассы распространения МЛИ
Второй из перечисленных факторов, легко учитывается при цифровой обработке данных, путем определения интегральных значений и дисперсии в пределах каждого импульса термооптического сигнала, что выполнено в с использованием ПЭС «Атмосферная оптоакустика». Разброс значений в зависимости P с учетом фактора неоднородности существенно уменьшается.
Подстановка исходных данных проведенных экспериментальных исследований в формулу показывает, что экспериментально регистрируемые и расчетные значения акустических давлений хорошо согласуются между собой: отличие составляет не более 30% в сторону увеличения для расчетных значений.
Таким образом, представленные зависимости по термооптической генерации АВ в атмосфере близки к линейным и позволяют напрямую для известного коэффициента поглощения МЛИ в атмосфере определять энергетические параметры МЛИ, подтверждая тем самым теоретически установленную другими авторами зависимость.
Уровень акустического сигнала, генерируемого пучком импульсного МЛИ, как показывают результаты экспериментальных исследований и отмечено в, достаточен для его уверенной регистрации на расстояниях в несколько километров при использовании направленного акустического приема: узконаправленный микрофон, параболическая антенна со звукозащитной блендой. Такой результат имеет практическую значимость как для задач дистанционной диагностики распространения МЛИ в атмосфере, так и для целей зондирования некоторых метеорологических параметров АПС ОА-способом.
При регистрации ОА-сигналов приемником, расположенным вблизи подстилающей поверхности, возникают отраженные АВ, которые при решении практических задач атмосферной акустики представляют серьезную помеху. В качестве примера на рис. 5 показана временная запись термооптического сигнала вместе с сигналом, отраженным подстилающей поверхностью.
Для обработки данного результата использована ПЭС «Атмосферная оптоакустика», с помощью которой численно скомпенсирована цилиндрическая расходимость АВ и линейное поглощение АВ в воздухе. Подстилающая поверхность в экспериментах представляла собой поросший травой ровный участок заболоченной местности. Временная задержка отраженного сигнала относительно прямого, обусловленная величиной Ar= Г2 — Г1, составила согласно рис. 2.5 - 21,25 мс.
Рис. 5. Термооптический сигнал (1) и его отклик, отраженный ппооверхностью подстилающей
Форма отраженного сигнала, как показано на рис. 2.5, отличается от формы прямого, поскольку коэффициент отражения подстилающей поверхностью частотно избирателен. Чтобы максимально скомпенсировать помеху отражения при цифровой обработке данных требуется дополнительная информация об акустическом импедансе подстилающей поверхности.
Регистрация ОА-сигналов при экспериментальном исследовании распространения МЛИ в условиях дождя показала следующее. Какой-либо явной зависимости генерируемого отдельными каплями дождя пикового звукового давления от энергии лазерного излучения не наблюдается, что следует из рис. 6.
Рис. 6. Эмпирическая зависимость акустического давления, генерируемого отдельными каплями дождя, в зависимости от лазерной энергии
Измеренная длительность акустических импульсов, генерируемых каплями дождя, составила менее 50 мкс, что меньше минимального временного разрешения регистрирующего акустического оборудования. Причем эти импульсы практически однополярны: амплитуда фазы сжатия P+ в акустическом импульсе значительно меньше амплитуды фазы разрежения P- . Это объясняется тем, то величина Т+ < Т- и акустические приемники регистрирует фазу сжатия с большей достоверностью.
Регистрация акустических импульсов, генерируемых отдельными каплями, в атмосферных исследованиях практически невозможна с расстояний порядка 10-15 м, поскольку акустический шум сопровождающий дождь и импульсные помехи от падающих на акустический датчик капель маскируют полезный сигнал.
На рис. 7 показан пример спектральной обработки акустических сигналов, регистрируемых в условиях слабого дождя при воздействии МЛИ: 1 - 3 - импульсы МЛИ.
Рис 7. Частотный спектр акустических сигналов, регистрируемых во время дождя в отсутствие оптического пробоя. 1 + 3 - импульсы МЛИ. d ~ 1+10 м
Сплошной кривой показан частотный спектр усредненного уровня внешнего акустического шума, регистрируемый в промежутках между импульсами МЛИ. Судя по представленным зависимостям, максимум в спектрах находится на низких частотах, что объясняется однополярностью, генерируемых каплями дождя импульсов.
В качестве примера на рис. 4.12 представлен спектр мощности акустического сигнала, генерируемого в канале МЛИ каплями дождя и отдельными ОП. Как показывает рисунок, в спектре появляется максимум, соответствующий частотному спектру от совокупности ОП, максимум которого зависит от наиболее вероятного размера ОП.