Реферат: Исследование электрохимического механизма проницаемости плацентарных мембран по анионам антибиотиков в малоамплитудных физических полях
Со времени открытия бензилпенициллина А. Флемингом антибиотики являются одним из наиболее эффективных средств борьбы с жизненно опасными инфекционными заболеваниями. Однако, весьма часто встречается ситуация, в которой патологический орган-мишень является труднодоступным для попадания в него молекул антибиотика и/или имеет развитые защитные биологические барьеры, эффективно препятствующие этому попаданию. В качестве примеров таких органов можно назвать глаза, предстательную железу, пародонтальные ткани, плаценту и т.д. Поэтому имеются трудности для получения необходимой локальной концентрации антибиотика в патологическом очаге, и при инъекциях или пероральном приеме часто в нужное место попадает не более общей дозы. Лечащему врачу приходится увеличивать прием антибиотиков, что может привести к различным побочным эффектам и осложнениям антибиотиковой химиотерапии.
Вопросами транспорта лекарств в организме занимается сравнительно молодая и бурно развивающаяся отрасль медицины - фармакокинетика, которая использует формальные аналогии таких процессов как всасывание лекарств; их распределение по тканям и органам, метаболизм, экскреция с тем или иным разделом химической кинетики.
Вместе с тем, на наш взгляд, традиционный фармакокинетический подход не учитывает некоторых важных электрохимических особенностей, присущих как лекарствам-антибиотикам, так и тканям организма, в которые они вводятся. Действительно, почти все широко распространенные в химиотерапии антибиотики либо присутствуют в форме солей, либо являются диссоциирующими в плазме крови на гидратированные протоны и сложные органические анионы.
Поэтому представляется достаточно очевидной необходимость учета взаимодействия анионов антибиотиков с распределенным зарядом тканей организма при описании химиотерапевтического транспорта. Фармакокинетика не рассматривает также и влияние различных физических полей на транспорт лекарств, которое широко известно из практики физиотерапии с применением электрических, магнитных, радиочастотных, СВЧ и лазерных электромагнитных полей, ультразвука и т.п. Все эти малоамплитудные полевые воздействия на организм обладают форетическими эффектами по отношению к лекарственным препаратам, наиболее широко известным из которых является электрофорез.
Все вышеизложенное позволяет отнести тему нашей работы по исследованию механизма проницаемости плацентарных мембран по анионам антибиотиков в малоамплитудных физических полях к новому актуальному научному направлению – электрохимической кинетике.
Цель работы
На основании теоретических и экспериментальных исследований определить особенности электрохимического механизма и кинетики переноса анионов антибиотиков (бензилпенициллина, оксациллина, левомицетина) в физиологическом растворе через препарированные плацентарные мембраны ускоряющем влиянии электрического, магнитного, радиочастотного, СВЧ, лазерного, злектромагнитных полей и ультразвука. Рассмотреть возможность синергетических эффектов стимулирования переноса антибиотиков с определением оптимального числа смешанных малоамплитудных полевых воздействий как основы приборов физиотерапии нового поколения. Провести анализ клинической эффективности применения этих приборов в стомaтoлoгии.
Научная новизна
впервые фармакокинетические характеристики молекул лекарств-антибиотиков через ткани организма связаны как с их электролитической анионной диссоциацией, так и с наличием стохастических мембранно-связанных модифицированной с учетом этих электрохимических аспектов модели «рыхлого квазикристалла».
впервые сформулированы теоретические математические модели ускоряющего влияния малоамплитудных физических полей на электрохимическую кинетику переноса анионов антибиотиков в тканях организма («рыхлых квазикристаллов») по механизмам изменения симметрии распределения зарядов на границах биологических мембран с межклеточной жидкостью (электрические и магнитные поля), дополнительной внутритканевой генерации тепла (электромагнитные и ВЧ-ультразвуковые поля) и дополнительной механической стимуляции направленным потоком колебаний биосреды распространения (НЧ-ультразвуковые поля);
в экспериментах с препарированными плацентарными мембранами впервые была доказана адекватность вышеупомянутой модифицированной модели «рыхлого квазикристалла» как для собственного, так и для физически стимулированного плацентарного переноса анионов левомицетина, бензилпенициллина и оксациллина, начиная со времен, много меньших периодов полураспада этих антибиотиков по липидным «кинковым» каналам проводимости с коэффициентами диффузии 2,6-1(Г8 -2,6-1(Г7 см2 /с, с энергией активации 7,9-13,4 кДж/моль, удельной электропроводностью плацент 2,04-10»7 См/см при ускоряющем сдвиге их потенциалов асимметрии порядка нескольких десятков милливольт; при экспериментальных исследованиях влияния магнитных полей на электрохимическую кинетику переноса аниона левомицетина впервые были обнаружены артефакты в виде преобладания ускоряющего действия постоянного поля с «северной» ориентацией и магнитомеханических резонансов левомицетиновой проницаемости плацент при частотах вращения синусоидальных и пульсирующих полей 0,6 и 10 Гц;
на основе проведенных теоретических и экспериментальных исследований впервые была построена математическая модель смешанных синергетических полевых воздействий в малоамплитудном приближении, согласно которой результирующий коэффициент ускорения трансмембранного переноса ионов представляет собой произведение частных коэффициентов ускорения - «электрического», термического и механического;
расчеты по синергетической модели и экспериментальным коэффициентам ускорения плацентарного переноса анионов левомицетина, бензилпенициллина и оксациллина в индивидуальных физических полях впервые показали, что результирующий коэффициент ускорения нарастает с числом смешения полей по экспоненциальному закону. Суммарный фактор системных реакций организма (биопараметричность) увеличивается пропорционально числу смешения, а энергетическая сенситивность тканей (плацент) изменяется немонотонно, и ее максимум приходится на число смешения, равное двум;
с помощью комплексного индекса оптимизации (КИО) по трем выходным параметрам - результирующему коэффициенту ускорения, суммарной биопараметричности и безразмерному коэффициенту сенситивности впервые были определены оптимальные числа смешения полей от 2 до 4, обеспечивающие плато одинаковых максимальных значений КИО и оптимальность конструкции аппарата антибиотиковой физиотерапии на сочетанных полевых эффектах.
Практическая ценность
Результаты работы учитывались при конструировании физиотерапевтической аппаратуры типа «Атос», «Атос-А», «Атос-МнДЭП», «Интрамаг», «Интратерм», «Ласт-1», «Ласт-2» и т.д., выпускаемой ООО «ТРИМА» в г. Саратове, а также использовались практикующими соответствующие антибиотиковые физиотерапевтические процедуры врачами-урологами, стоматологами, офтальмологами. Конкретные данные по стимулированной антибиотиковой проницаемости плацент представляют интерес для врачей-гинекологов.
Материалы диссертации используются при чтении курса лекций и проведении лабораторных работ по биофизике студентам IV курса кафедры МВПО СГТУ.
Апробация работы
Результаты диссертационной работы доложены и обсуждены на Всероссийской конференции «Электрохимия мембран и процессы в тонких ионопроводящих пленках» (г. Энгельс), конференции «Современные проблемы теоретической и экспериментальной химии» (г. Саратов), Всероссийской конференции молодых ученых «Актуальные проблемы электрохимической технологии» (г. Энгельс, 2000), 5-й Международной конференции «Современные проблемы имплантологии» (г. Саратов, 2000).
Публикации
Основное содержание работы опубликовано в 10 статьях и тезисах докладов конференций.
Основные положения, выносимые на защиту
• Схемы диссоциации исследуемых антибиотиков.
• Теория переноса аниона антибиотика в тканях организма по модели «рыхлого квазикристалла».
• Методика эксперимента.
• Собственный антибиотиковый форез в плацентах.
• Антибиотиковый электрофорез в плацентах.
• Антибиотиковый магнитофорез в плацентах.
• Антибиотиковый СВЧ-форез в плацентах.
• Антибиотиковый лазерофорез в плацентах.
• Антибиотиковый НЧ и ВЧ-сонофорез в плацентах.
• Синергетические полевые эффекты антибиотикового анионного переноса в плацентах по модели «рыхлого квазикристалла».
• Учет системных реакций организма и энергетической сенситивности тканей.
• Оптимизация числа синергетических полевых воздействий в аппаратах антибиотиковой физиотерапии. Корреляция с терапевтическим эффектом.
• Выводы.
Структура и объем работы
--> ЧИТАТЬ ПОЛНОСТЬЮ <--