Реферат: Исследование клеточного цикла методом проточной цитометрии
Принципы проточной цитометрии весьма просты. Клетки или ядра поодиночке пересекают сфокусированный световой пучок, обычно лазерный. Свет определенной длины возбуждает молекулы флуоресцирующих красителей, связанных с различными клеточными компонентами, при этом при этом может происходить одновременное возбуждение нескольких разных красителей, что позволяет оценить сразу несколько клеточных параметров. Свет, испускаемый красителями, собирают с помощью системы линз и зеркал и разлагают на компоненты. Световые сигналы детектируют, преобразуют в электрические импульсы и далее в форму, удобную для компьютерной обработки и хранения информации.
Методом проточной цитометрии можно получать самые разные данные: определять содержание в клетке ДНК и РНК, суммарное количество белков и количество специфических белков, узнаваемых моноклональными антителами, исследовать клеточный метаболизм (например, измерять внутриклеточный рН), изучать транспорт ионов кальция и кинетику ферментативных реакций (M.G.Ormerod, 1990).
В продаже имеются разные проточные цитометры, и изложить общие принципы их работы сложно. Можно отметить лишь несколько моментов, общих для всех приборов:
– для анализа необходимы гомогенные суспензии изолированных клеток;
– клетки или ядра должны иметься в достаточном количестве;
– для устранения эффектов, связанных с возможной агрегацией клеток, необходимо использовать всю доступную информацию, например данные по рассеянию света в объеме и отношение площади пика к его ширине.
2. Анализ ДНК-гистограмм
Измерение содержания ДНК – одно из самых простых и распространенных применений проточной цитометрии. Первые ДНК-гистограммы, полученные в 1969 г.(M.A.Van Dilla, T.T. Trujillo, P.F.Mullaney, J.R.Coulter, 1969), позволили четко различить клетки, находящиеся в G1-, S- и G2/М-фазах клеточного цикла. С тех пор появилось множество работ по измерению содержания ДНК в клиническом материале, полученном в основном от больных раком.
Из ДНК-гистограмм можно получить два рода данных. Во-первых, идентифицировать клетки с аномальным содержанием ДНК (рис.1, Б), так называемые анеуплоидные клетки. Во-вторых, определить долю клеток, находящихся в S-фазе (SPF), и оценить степень пролиферации. Как правило, в клеточной популяции с высокой пролиферативной активностью число клеток в S-фазе больше, чем обычно.
Международный комитет по аналитической цитометрии (W.Hoddeman, J.Schumann, M.Andreeff, B.Barlogie, C.J.Herman, R.C.Lief et.al, 1984) попытался стандартизировать множество способов анализа ДНК-гистограмм, и тем не менее для анализа продолжают использовать различные подходы, часто с привлечением компьютерных прграмм. Далее будут рассмотрены некоторые из этих подходов :
Вычисление коэффициента вариации (CV)
Самый простой способ оценки качества результатов основан на вычислении CV для G1-пика ДНК диплоидных клеток. Эта величина определяется из приведенного ниже соотношения в предположении, что G1-пик следует нормальному распределению:
CV = W / (M · 2,35),
Где W – ширина пика на уровне полувысоты, М – номер канала для максимума G1 - пика.
Чем меньше CV и чем лучше G1 -пик отвечает нормальному распределению, тем качественнее результаты. В действительности качество ДНК-гистограмм, как правило, не очень высоко, и чтобы судить о достоверности результатов, полученных при клинических исследованиях, приходится оценивать средний CV и диапазон его значений.
Вычисление индекса ДНК
Индекс ДНК для «анеуплоидного» пика (пиков) на гистограммах с двумя или более G1-пиками (рис.1, Б) вычисляют, ориентируясь на «диплоидный» G1 -пик. Так, на рис. 1, Б G1 -пику для опухолевых клеток соответствует вдвое большее количество ДНК, чем G1 -пику диплоидных клеток, поэтому индекс ДНК для него равен 2,0. Для анеуплоидных клеток, содержащих на 50% больше ДНК, чем нормальные, индекс равен 1,5. Анеуплоидию можно выявить только в тех случаях, когда на гистограммах имеется не менее двух G1 -пиков. Чтобы установить, какой из близко расположенных друг к другу G1 -пиков соответствует диплоидным клеткам из свежих образцов ткани, можно использовать внешний ДНК-стандарт. Если присутствуют только диплоидные клетки, то ИД считают равным 1,0.
Основная проблема при определении плоидности связана с трудностью выявления малого числа анеуплоидных стволовых клеток. Еще труднее идентифицировать малочисленные тетраплоидные стволовые клетки, поскольку такие клетки в G1 -фазе по содержанию ДНК равноценны диплоидным клеткам в фазе G2. Так, в отличие от рис 1, Б, на котором четко виден высокий «тетраплоидный» пик, на рис.1, А обнаруживается лишь слабый пик, соответствующий четырем гаплоидным наборам ДНК.
Определение доли клеток, находящихся в S-фазе
Для определения доли клеток в S-фазе используется метод Байсха и др.(H.Baisch, W.Gohde, W.A.Linden, 1975), модифицированный применительно к анеуплоидным клеткам. Суть метода состоит в построении прямоугольника, вписывающегося в пространство между G1 - и G2 -пиками. Высота этого прямоугольника определяется числом клеток, приходящихся на 10 центральных каналов области S-фазы, из которого вычисляется среднее число клеток на канал. Аналогичным способом можно определить долю анеуплоидных клеток в S-фазе при условии, что высоту прямоугольника (рис.1, Б) можно вычислить, используя ту часть гистограммы, которая не перекрывается с областью, отвечающей диплоидным клеткам.