Реферат: Исследование мумиё
МЕТОДЫ И РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ МУМИЁ
МУСУРМАНКУЛОВ Р.Т.
Содержание
Обзор
Микробиологический анализ
радиационный анализ
Микроэлементный анализ
Биохимический анализ
Токсилогический анализ
Исследование канцерогенности
Методы идентификации мумиё
Обзор
Проблема признания мумиё лекарственным средством и введение его в число разрешенных к применению, включает в себя ряд вопросов, которые так и не смогли решить многочисленные исследования, ведущиеся с 1956 года. По-прежнему нет единой теории происхождения этого препарата народной медицины. Добываемый в разных местах СНГ и перерабатываемый по разным технологиям, конечный продукт различается как по химическому составу, так и по фармакологическому действию. Естественно, что разнообразие свойств от предполагаемого происхождения, места сбора и метода переработки сырца делает невозможным обычную процедуру утверждения нового фармакологического средства, т.к. каждая новая партия препарата должна будет вновь проходить утверждение. Учитывая это, мы предложили [1] упрощенный вариант этой процедуры, включающий в себя комплекс исследований, удостоверяющих в безопасности данного препарата для организма человека. Этот комплекс должен включать следующие обязательные анализы: микробиологический, радиологический, микроэлементный, токсикологический. Поэтому проблема стандартизации мумиё как лекарственного препарата, сводится к решению двух вопросов.
1. Идентификация сырца мумиё по предполагаемому виду происхождения и месту сбора.
2. Идентификация экстракта мумиё по методу переработки и проведенным анализам.
Работ, посвященных проблеме происхождения мумиё в природе, достаточно много, и они подробно описаны в [2]. Что касается мест нахождения, то наибольшее количество работ связано с изучением памирского и тянь-шаньского мумиё [3-16,25,36]. Достаточно много работ по исследованию кавказского мумиё [17-22]. Имеются данные об исследовании забайкальской [23] и саянской [24] разновидности мумиё. Кроме того, в [32] приводятся данные по заграничным видам мумиё: монгольское, индийское, бирманское и непальское. Более подробно эти работы будут освещены при анализе результатов, приведенных в них.
Методы переработки сырца различаются как по применяемой технологии, так и по температурным режимам. В [28] сырец заливали холодной дистиллированной водой (1: 3) и оставляли при комнатной температуре на 2-3 суток, периодически помешивая. После полного растворения примесь удаляли фильтрованием через двухслойную марлю. Полученную жидкость коричневого цвета выпаривали на водяной бане при 60-70 °С и, постоянно помешивая стеклянной палочкой, доводили до образования густой тестовидной массы. Оставшуюся часть влаги удаляли в сушильном шкафу при температуре не выше 60 °С. В [21] куски породы с мумиё обмывались этиловым спиртом, затем несколькими порциями стерильной водопроводной воды, что обеспечивало чистоту препаратов в санитарно-бактериологическом отношении, но не уничтожало собственной микрофлоры мумиё. Полная стерилизация раствора мумиё достигалась при троекратном прогревании его на водяной бане в течение 15 минут при температуре кипения. При этой же температуре проводилась очистка в [16,24]. В [31] образцы сырца обрабатывали 10-кратным количеством дистиллированной воды и оставляли на ночь. Затем декантировали и фильтровали надсадочную жидкость через бумажный фильтр. Остатки порознь многократно обрабатывали водой до появления бесцветной жидкости. Объединенные фильтраты упаривали на водяной бане при температуре не выше 50 °С до густого остатка, после чего образцы досушивали при постоянном переворачивании массы. Также 10-кратным количеством теплой воды (40-50 °С) заливали измельченный сырец в [36], затем после многократного сцеживания и фильтрования извлекатель отгонялся либо в вакуум-выпарном аппарате при 50-55 °С и при разрежении 600-650 мм. рт. ст., либо на низком огне при температуре 70-80 °С. Экстракт досушивали в вакуум-сушильном аппарате или обычном сушильном шкафу до остаточной влаги не более 5%. Низкотемпературная очистка (не выше 40 °С) применялась в [1]. Измельченный сырец заливали родниковой водой (1: 5) и настаивали в течение двух суток. Затем раствор фильтровали через четырехслойную марлю и выливали в емкость из нержавеющей стали. Емкость нагревали до 40 °С, а установленные тепловые вентиляторы ускоряли процесс испарения воды из раствора. После удаления основной части воды оставшуюся полужидкую массу разливали тонким слоем на полиэтилене и досушивали до нужной консистенции. Кроме того, часто используют выпаривание воды из раствора на паровых банях (низкотемпературное), при кипячении раствора, а то и вытапливание мумиё непосредственно из сырца, используя сравнительно низкую температуру плавления мумиё (около 80 °С). По внешнему виду экстракт мумиё представляет собой твердую массу с блестящей поверхностью различной окраски - от желто-коричневой до черной, со специфическим для каждой разновидности запахом и горьким вкусом. При повышении температуры мумиё размягчается, становится вязким, мажущим. На воздухе масса затвердевает и превращается в твердое, хрупкое вещество. Имеет своеобразный запах, горьковатый вкус.
Данные о растворимости в различных жидкостях противоречивы. Все авторы отмечают хорошую растворимость в воде. Однако в отношении органических растворителей картина иная. Так, в [3,16] утверждается, что в бензоле, ацетоне, хлороформе, метиловом и этиловом спиртах мумиё частично растворяется и заметно набухает. Однако в [30] утверждается, что мумиё очень мало растворяется в 95% спирте (1: 4500) и эфире (1: 7000), практически нерастворимо в хлороформе (1: 10000). Подобные результаты получены в [26,27]. В таблице 1 приведены данные о физико-химических характеристиках исследованного мумиё. Как видно из таблицы, результаты исследования характеристик мумиё имеют разброс и не могут служить каким-то четким ориентиром при идентификации мумиё.
Микробиологический анализ
Микробиологическая загрязненность мумиё исследовалась во многих работах. В [7] изучали бактериальную форму мумиё и действие этого препарата на некоторые виды микроорганизмов. Всего было исследовано 4 пробы, из которых 3 являлись исходным материалом, четвертая была очищенным препаратом.1-я проба содержала большое количество кала животных, 2-я - масса, покрывающая обломки слоистого камня. Обе пробы были добыты в районе г. Пенджикента.3-я проба, также покрывающая камни, была добыта в горных пещерах у озера Искандер-Куль. В проведенной серии опытов изучалась аэробная и анаэробная микрофлора мумиё. Поверхность вещества предварительно обрабатывалась спиртом и трижды стерильным физиологическим раствором, затем оно растворялось в физиологическом растворе 1: 2 и 1: 4. Разведенное мумиё засевалось на среды Левиной, Плоскирева, Сабуро, 5% кровяной агар, кусочки картофеля, мясопептонный агар и производилось выращивание в течение 10 дней при комнатной температуре в условиях термостата. Из всех проб мумиё выделены одни и те же микроорганизмы: энтерококки, сарцины, спороносные палочки, разжижающие и не разжижающие желатин. Анаэробной микрофлоры в мумиё не оказалось.
В [12] определяли нормальных обитателей в мумиё Зеравшанской разновидности. Проводили 3 серии опытов с поверхностного слоя и 3 серии опытов с глубинной части по 0.3 г материала с одномоментным посевом в нейтральной, кровяной и молочно-солевой агар, на среду Эндо, Плоскирева и Сабуро для выявления аэробных и факультативных микробов. Также производился посев на среду Врублевского, Китт-Тароцци, Вильсон-Блера, агар со столбиком с последующим подогреванием для облигатных анаэробных микробов. Материал после посева ставился в термостат на 24 часа, затем в течение 5 дней проводилось наблюдение при комнатной температуре. Бактериологические исследования показали, что при посеве мумиё из поверхностного слоя при всех трех сериях опытов были выявлены воздушные сапрофитные микроорганизмы: сарцины, микрококки, тетракокки, воздушная споровая палочка и плесень. Посев, произведенный из глубокого слоя мумиё, дал возможность лишь в одном случае выделить воздушную споровую палочку и плесень. Ни в одном случае не были обнаружены патогенные микробы ни в аэробных, ни в анаэробных условиях культивирования.
В [13] микробиологическому исследованию подверглись 3 образца мумиё (матчинское, 2 образца алайского). Мумиё-сырец, обработанный спиртом, промывали стерильным физиологическим раствором, затем делали посев в мясопептонный бульон и ставили в термостат при 37 °С на 24-28 часов. Высевы производились в мясопептонный агар в чашки Петри. Из каждой колонии готовились мазки, которые окрашивались по Граму, и кроме этого, изучались биохимические свойства каждого вида микроба. При определении вида микроба пользовались определителем В.А. Циона. В исследованных образцах получены 7 видов микроорганизмов: Бац. мегатериум, Бац. пабули, Бац. витреус, Бац. мезентерикус, Бац. сублитис, Бац. микоидес, Бац. антракоидес, которые встречаются преимущественно в фекалиях животных и на почве.
Изучение собственной микрофлоры кавказского мумиё [21] показало, что она представлена палочковидными бактериями, актиномицетами, проектиномицетами и грибками. Кроме того, выявлены следующие физиологические группы микроорганизмов: сульфатрецирующие, нитрифицирующие, гнилостные, денитрифицирующие, аэробные и анаэробные фиксаторы азота, бактерии, разлагающие клетчатку в аэробных условиях. Полная стерилизация раствора мумиё достигалась при трехкратном прогревании его на водяной бане в течение 15 минут при температуре кипения.
При решении вопроса о стерильности мумиё в [28] исследовали 10 проб. Из каждой пробы готовили основной раствор из расчета 1 мг на 1 мл фосфатнобуферной смеси (по прописи N 1 ГФ), 10% раствор мумиё в мясо-пептонном бульоне с последующим десятикратным разведением до 0,001%. В первом варианте опытов из основного раствора мумиё делали посев по 1 мл на 2 пробирки, содержащих по 20 мл тиогликолевой среды. Затем из одной пробирки с тиогликолевой средой делали посевы по 0,5 мл на скошенный агар с 0,5% глюкозой, на чашку со средой Сабуро и по 1 мл в 2 пробирки с тиогликолевой средой. Посевы на среде Сабуро и одну из 2 пробирок с тиогликолевой средой вновь выдерживали 5 суток при 22°С. Посевы на остальных средах, в том числе и вторую пробирку первичного посева на тиогликолевой среде, выдерживали 5 суток при температуре 37°С. Учет результатов посевов производили через 10 суток после первичного посева проб мумиё на тиогликолевую среду. Контролем служили пробирки тиогликолевой среды с фосфатно-буферной смесью. В другом варианте опытов различные растворы мумиё от 10% до 0,001% выдерживали в термостате в течение 7 суток. Причем навески мумиё, взятые для приготовления основного 10% раствора, подвергали относительной стерилизации - в течение 4-5 часов выдерживали в 96% спирте и затем обмывали стерильной водой. Ежедневно в течение 7 суток из каждого разведения мумиё после инкубации в термостате делали посевы на мясопептонный щелочной и молочно-солевой агары, среды Плоскирева, Эндо и Сабуро. Следует отметить, что микроорганизмы мумиё хорошо росли на средах Эндо, Сабуро, солевом агаре и не давали роста на среде Плоскирева и щелочном агаре. Результаты обоих вариантов показали, что мумиё нестерильно и содержит в себе микроорганизмы почвы, находящиеся, по видимому, в состоянии анабиоза. Были проведены исследования по идентификации бактерий, согласно схеме, предложенной Г.Я. Кивман. При использовании специальной накопительной среды для выделения патогенных стафилококков удалось обнаружить стафилококк с желтой пигментацией. Однако выделенные культуры стафилококка не давали гемолиза на чашках с 5% взвесью эритроцитов кролика и не коагулировали плазму крови. На основании этих результатов можно отнести выделенные культуры стафилококка к группе сапрофитных бактерий. При посеве на среду Эндо отмечен рост колоний различного цвета, микроорганизмы которых являются одной из разновидностей сапрофитных бактерий, относящихся к роду эшеририй. При посеве на среды Левина и Плоскирева ни в одном случае не обнаружен рост колоний, подозрительных на патогенные бактерии рода шигелл, сальмонелл и протея.
В [1] определяли число микробных клеток методом высева на твердые и жидкие питательные среды и общую бактериальную загрязненность при пятикратной повторности анализов. Навески экстракта мумиё предварительно обрабатывали 96% этиловым спиртом. Исходные навески готовили из расчета 0,1 г на 10 мл стерильной водопроводной воды (1% раствор) с последующим разведением до 0,00001%. Высевали на следующие среды: МПБ, МПА, сусло-агар, бульон Хатингера, РПА и культивировали при температуре 28-37о С в условиях термостата. Учет результатов посева проводили на 1-е, 3-и, 7-е и 10-е сутки. Проведенные исследования показали, что анализируемое мумиё нестерильно и содержит в себе определенную микрофлору, представленную в основном бактериальными (кокковые и палочковидные) формами. Ни в одном варианте опытов не отмечено колоний, подозрительных на патогенные бактерии типа шигелл, сальмонелл и протея.
На основании вышесказанного можно заключить, что препарат мумиё, добытый в разных местах и переработанный различными способами, имеет бактериальную загрязненность, однако отсутствуют патогенные бактерии типа шигелл, сальмонелл и протея. Но не исключено, что сырец мумиё может быть загрязнен бактериальной средой, сопутствующей калу диких плотоядных животных, что делает обязательным проведение анализа на бактериальную загрязненность мумиё.
радиационный анализ
Необходимость радиационного контроля мумиё определяется рядом причин, среди которых содержание радиоактивных элементов в недрах мумиёносных районов, загрязненность продуктами распада осколков деления от ядерных взрывов (Казахстан, Кыргызстан, Алтай), а также продуктов переработки урансодержащих пород. Подобные анализы были проведены различными исследователями. В [13] радиометрическому исследованию подвергся мумиё-сырец, собранный в разных районах республик Средней Азии и очищенный экстракт, а также китайское мумиё. Радиометрия проводилась на аппарате Б-3, счетчик Гейгера-Мюллера СТС-6-1960. Мумиё в количестве 1 г располагалось на расстоянии 1 см от счетчика на алюминиевой тарелочке площадью 5 кв. см равномерным слоем. Измерялись относительные импульсы в минуту. Полученные данные показывают, что разные образцы мумиё имеют неодинаковое количество радиоактивных примесей (в среднем 3-15 импульсов). Наибольшее количество импульсов (11-15) получили от очищенного экстракта. Количество импульсов в минуту на 1 г мумиё меньше истинных, т.к. счетчик регистрирует не более 10% излучения. В [16] радиоактивность определялась по излучениям радиометрическим методом. Для регистрации a-излучения использовали установки Б и Б-2 с сцинтилляционной приставкой П-349-2. Исследование показало, что a-активность мумиё (Архар-Таш) естественного имеет 0,1*10-7 Ки/кг, горная порода, на которой скопилось мумиё - 0,297*10-7 Ки/кг. Для регистрации b-излучения использовали также установки Б и Б-2, Б-3 со счетчиками различных типов: торцевыми МСТ-17 и Т-75 и цилиндрическими АС-1, АС-2, СТС-5, СТС-6 и другими, укрепленными в свинцовых домиках. b-активность мумиё имеет 2,4*10-7 Ки/кг, горная порода, на которой мумиё скопилось - 6,24*10-8 Ки/кг. Для получения эманации мумиё использовали аппарат МД-8, его возможность обеспечивать поток горячего и холодного воздуха. Первоначальные активности мумиё с горными породами составляли: a-излучение - 2,5*10-7 , b - 9,25*10-8 Ки/кг. После помещения мумиё (5-6 г) в резервуар аппарата ЛД-8 вдували горячий воздух через поверхность мумиё с горными породами в течение 200 минут. Повторное измерение радиоактивности показало: a-активность - 0,1*10-7 Ки/кг - уменьшилась более чем в 20 раз, b - активность - 1,25*10-8 Ки/кг - меньше в 9 раз. Проведенные исследования показали, что, как и другие радиоактивные элементы, мумиё способно выделять радон.
В [34], учитывая, что исследуемое мумиё добывалось из известняков, в которых могут быть в небольших количествах радиоактивные вещества, проверили золу на наличие радиоактивных элементов. Результаты исследования показали, что в мумиё нет радиоактивных элементов.
В [37] было проведено исследование радиоактивности мумиё-сырья и препаратов из него с целью выяснить наличие в них естественных радиоактивных элементов. Измеряли a-, b - и g-излучение. Никакого специфического g-излучения у всех исследованных образцов не наблюдалось. Во всех образцах обнаружена b-активность. Наибольшей радиоактивностью обладают образцы Среднеазиатского и Алтайского мумиё. Активностью, стоящую почти на уровне естественного радиоактивного фона, обладает Забайкальское мумиё. Наличие b-активности связывается с наличием в исследуемых образцах изотопа К40 , который в количестве 0,012 % содержится в естественном калии, что было подтверждено изотопным анализом.
В [1] для определения радиоактивных примесей была использована стандартная методика и низкофоновая аппаратура по регистрации a-, b - и g - излучения. В качестве детекторов излучения применяли блоки детектирования: для a-излучения - с детектором CsJ (Tl) (63х0,35), для b-излучения - с сцинтилляционной пластмассой (60 см2 ), для g-излучения - с детектором NaJ (Tl) (63х63). Все детекторы были заключены в свинцовую защиту толщиной 50 мм для ослабления фоновой активности. Счетная аппаратура состояла из анализатора NC-482В и пересчетных устройств ПП-15А и ПСО2-2М. Определение наличия радиоактивных примесей в препарате осуществляли сравнением многократных (не менее 10 раз) тридцатиминутных измерений препарата и фона с помощью 3 видов детекторов излучений. Сравнение производили по усредненным значениям многократных измерений радиоактивности препарата и фона. Исследование показало, что препарат не содержит радиоактивных примесей, превышающих естественный радиационный фон.
Микроэлементный анализ
Исследованию содержания микроэлементов в мумиё посвящено значительное число работ. В таблице 2 приведены результаты исследования микроэлементного состава, а ниже даются краткие характеристики примененных методик.
В [3] исследованные: заграничный (1 в таблице), Чаткальский (2) образцы мумиё, а также смолообразное вещество (3) подвергали спектральному анализу. Как видно из данных таблицы 2, существенной разницы в качественном составе не имеется. Минеральный состав смолообразных органических веществ обоих образцов также почти одинаков.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--