Реферат: История компьютера
По сравнению с США, СССР и Англией развитие электронной вычислительной техники в Японии, ФРГ и Италии задержалось. Первая японская машина "Фуджик" была введена в эксплуатацию в 1956 году, серийное производство ЭВМ в ФРГ началось лишь в 1958 году.
ЭВМ первого поколения, эти жесткие и тихоходные вычислители, были пионерами компьютерной техники. Они довольно быстро сошли со сцены, так как не нашли широкого коммерческого применения из-за ненадежности, высокой стоимости, трудности программирования. Это были в основном машины для громоздких расчетов.
IV. Âòîðîå ïîêîëåíèå êîìïüþòåðîâ
Транзисторы
Элементной базой второго поколения стали полупроводники. Без сомнения, транзисторы можно считать одним из наиболее впечатляющих чудес XXв.
Патент на открытие транзистора был выдан в 1948 году американцам Д.Бардину и У.Браттейну, а через восемь лет они вместе с теоретиком В.Шокли стали лауреатами Нобелевской премии. Скорости переключения уже первых транзисторных элементов оказались в сотни раз выше, чем ламповых, надежность и экономичность - тоже. Впервые стала широко применяться память на ферритовых сердечниках и тонких магнитных пленках, были опробованы индуктивные элементы - параметроны.
Наиболее яркими представителями второго поколения были машины стретч (сша, 1961), "Атлас" (Англия, 1962), БЭСМ-6 (СССР, 1966). Пожалуй, построение таких систем, имевших в своем составе около 105 переключательных элементов, было бы просто невозможным на основе ламповой техники. Второе поколение рождалось в недрах первого, перенимая многие его черты.
"Атлас"
Первая бортовая ЭВМ для установки на межконтинентальной ракете - "Атлас" - была введена в эксплуатацию в США в 1955 году. В машине использовалось 20 тысяч транзисторов и диодов, она потребляла 4 киловатта. В 1961 году наземные компьютеры фирмы "Бэрроуз" управляли космическими полетами ракет "Атлас", а машины фирмы IBM контролировали полет астронавта Гордона Купера. Под контролем ЭВМ проходили полеты беспилотных кораблей типа "Рейнджер" к Луне в 1964 году, а также корабля "Маринер" к Марсу. Аналогичные функции выполняли и советские компьютеры.
Первые серийные машины
Первые серийные универсальные ЭВМ на транзисторах были выпущены в 1958 году одновременно в США, ФРГ и Японии.
В Советском Союзе первые безламповые машины "Сетунь", "Раздан" и "Раздан‑2" были созданы в 1959‑1961 годах. В 60-х годах советские конструкторы разработали около 30 моделей транзисторных компьютеров, большинство которых стали выпускаться серийно. Наиболее мощный из них - "Минск‑32" выполнял 65 тысяч операций в секунду. Появились целые семейства машин: "Урал", "Минск", БЭСМ.
БЭСМ-6
Рекордсменом среди ЭВМ второго поколения стала БЭСМ‑6, имевшая быстродействие около 30 моделей транзисторных компьютеров, большинство которых стали выпускаться серийно. Наиболее мощный из них - "Минск‑32" выполнял 65 тысяч операций в секунду. Появились целые семейства машин: "Урал", "Минск", БЭСМ. Рекордсменом среди ЭВМ второго поколения стала БЭСМ‑6, имевшая быстродействие около миллиона операций в секунду, - одна из самых производительных в мире. Архитектура и многие технические решения в этом компьютере были настолько прогрессивными и опережающими свое время, что он успешно использовался почти до нашего времени.
МИР и МИР-2
Специально для автоматизации инженерных расчетов в Институте кибернетики Академии наук УССР под руководством академика В.М.Глушкова были разработаны компьютеры МИР (1966) и МИР-2 (1969). Важной особенностью второй машины явилось использование телевизионного экрана для визуального контроля информации и светового пера, с помощью которого можно было корректировать данные прямо на экране.
К середине 60-х годов бум в области транзисторного производства достиг максимума - произошло насыщение рынка. Дело в том, что сборка электронного оборудования представляла собой весьма трудоемкий и медленный процесс, который плохо поддавался механизации и автоматизации.
Таким образом, созрели условия для перехода к новой технологии, которая позволила бы приспособиться к растущей сложности схем путем исключения традиционных соединений между их элементами. Идея интегральных схем носилась в воздухе.
V. Òðåòüå ïîêîëåíèå
Интегральные схемы
Приоритет в изобретении интегральных схем, ставших элементной базой ЭВМ третьего поколения, принадлежит американским ученым Д.Килби и Р.Нойсу, сделавшим это открытие независимо друг от друга. Массовый выпуск интегральных схем начался в 1962 году.
Уже в 1964 году было объявлено о планах выпуска дешевого (!) настольного калькулятора, в котором вместо 21 тысячи дискретных элементов (как в обычных калькуляторах) предполагалось использовать 29 интегральных схем. Упоминавшийся выше ЭНИАК в 1971 году мог бы быть собран на пластине в полтора квадратных сантиметра. Началось перевоплощение электроники в микроэлектронику.
Несмотря на успехи интегральной техники и появление мини-ЭВМ, в 60-х годах продолжали доминировать большие машины. Таким образом, третье поколение компьютеров, зарождаясь внутри второго, постепенно вырастало из него.
Первая массовая серия машин на интегральных элементах стала выпускаться в 1964 году фирмой IBM. Эта серия, известная под названием IBM-360, оказала значительное влияние на развитие вычислительной техники второй половины 60-х годов. Она объединила целое семейство ЭВМ с широким диапазоном производительности, причем совместимых друг с другом. Последнее означало, что машины стало возможно связывать в комплексы, а также без всяких переделок переносить программы, написанные для одной ЭВМ, на любую другую из этой серии. Таким образом, впервые было выявлено коммерчески выгодное требование стандартизации аппаратного и программного обеспечения ЭВМ.
В СССР первой серийной ЭВМ на интегральных схемах была машина "Наири-3" , появившаяся в 1970 году. Со второй половины 60-х годов Советский Союз совместно со странами СЭВ приступил к разработке семейства универсальных машин, аналогичного системе ibm-360. В 1972 году началось серийное производство стартовой, наименее мощной модели Единой системы - ЭВМ ЕС-1010, а еще через год - пяти других моделей. Их быстродействие находилась в пределах от десяти тысяч (ЕС-1010) до двух миллионов (ЕС-1060) операций в секунду.
В рамках третьего поколения в США была построена уникальная машина ИЛЛИАК-4, в составе которой в первоначальном варианте планировалось использовать 256 устройств обработки данных, выполненных на монолитных интегральных схемах. Позднее проект был изменен, из-за довольно высокой стоимости (более 16 миллионов долларов). Число процессоров пришлось сократить до 64, а также перейти к интегральным схемам с малой степенью интеграции. Сокращенный вариант проекта был завершен в 1972 году, номинальное быстродействие ИЛЛИАК-4 составило 200 миллионов операций в секунду. Почти год этот компьютер был рекордсменом в скорости вычислений.
Именно в период развития третьего поколения возникла чрезвычайно мощная индустрия вычислительной техники, которая начала выпускать в больших количествах ЭВМ для массового коммерческого применения. Компьютеры все чаще стали включаться в информационные системы или системы управления производствами. Они выступили в качестве очевидного рычага современной промышленной революции.
VI. ×åòâåðòîå ïîêîëåíèå
СБИС (сверхбольшие интегральные схемы)
Начало 70-х годов знаменует переход к компьютерам четвертого поколения - на сверхбольших интегральных схемах (СБИС). Другим признаком ЭВМ нового поколения являются резкие изменения в архитектуре.
Микропроцессоры
Техника четвертого поколения породила качественно новый вид ЭВМ - микропроцессор. Обычно при работе машины процессор используется с наименьшим коэффициентом занятости, так как при решении конкретной задачи не пускает в ход все свои логические возможности. Поэтому в 1971 году пришли к идее ограничить возможности процессора, заложив в него небольшой набор операций, микропрограммы которых должны быть заранее введены в постоянную память. Оценки показали, что применение постоянного запоминающего устройства в 16 килобит позволит исключить 100‑200 интегральных схем логики. Так возникла идея микропроцессора, который можно реализовать даже на одном кристалле, а программу в его память записать навсегда. В рядовом микропроцессоре уровень интеграции соответствует плотности, равной примерно 500 транзисторам на один квадратный миллиметр, при этом достигается очень хорошая надежность.
Суперкомпьютеры
К середине 70-х годов положение на компьютерном рынке резко и непредвиденно стало изменяться. Четко выделились две концепции развития ЭВМ. Воплощением первой концепции стали суперкомпьютеры, а второй - персональные ЭВМ.
Из больших компьютеров четвертого поколения на сверхбольших интегральных схемах особенно выделяются американские машины "Крей-1" и "Крей-2", а также советские модели "Эльбрус-1" и "Эльбрус-2". Первые их образцы появились примерно в одно и то же время - в 1976 году. Все они относятся к категории суперкомпьютеров, так как имеют предельно достижимые для своего времени характеристики