Реферат: История развития понятия "функция"

Одному – двум учащимся можно предложить подготовить доклад на тему "История развития понятия функции". Можно дать сравнение уже известных им определений функции с новым определением после того, как этот доклад будет представлен в классе.

Нужно напомнить учащимся о том, что математика возникла из практических нужд человека, отсюда необходимо введение нового определения функции. Здесь нужно сказать о проблеме, с которой столкнулись физики, в частности, Поль Дирак; упомянуть его дельта-функцию, которая выходит далеко за рамки классического определения функции. Необходимо также сказать о работах, в которых неизвестными являются не функции точки, а "функции области", что лучше соответствует физической сущности явления.

Нужно также сказать и о том, что на этом развитие понятия функции не остановилось (понятие обобщенной функции) и, скорее всего, будет изменяться дальше, приспосабливаясь к нуждам науки.

Заключительное занятие по теме "функция"

Построение занятий в форме лекций полезно в хорошо подготовленных классах, где школьники способны воспринимать новый материал, хорошо ориентируются в изученном материале.

К сожалению, таких классов в современной школе становится все меньше и меньше, поэтому заключительное занятие я предлагаю провести по следующему плану: лекционный материал об истории развития понятия функции, проверку и закрепление знаний, решение примеров и задач необходимо чередовать. Важно проследить связь понятия "функция" с другими предметами, с повседневной жизнью.

Лекцию, читаемую учителем, слушать, безусловно, приятнее, но для учеников лучше принять непосредственное участие в подготовке урока.

Для проведения занятия я предлагаю раздать сообщения (на 3 – 5 минут каждое). Необходимо каждому из докладчиков помочь в работе над сообщением, продумать с ним план выступления, попытаться предугадать вопросы, которые могут последовать из аудитории.

Темы сообщений могут быть следующими (часть докладов можно взять из представленного реферата, переработав их предварительно для имеющегося уровня знаний учеников):

Понятие функции в математике до 17 века.

Функции вокруг нас (рассказ о значении функции в жизни человека).

Понятие функции через механическое и геометрическое представление (Виет, Декарт).

Функции в физике и геометрии.

Аналитическое определение функции (2 человека: история + конкретные примеры).

Идея соответствия.

Примеры использования понятия функции в естествознании (химия, биология).

Современное состояния понятия "функция" (готовит учитель для наиболее сильных классов).

О проведении урока следует объявить за 3 – 4 недели, подготовить стенгазету с анонсами предстоящих докладов.

Сам урок можно провести в виде конференции на тему: "Нужна ли нам функция". Желательно вовлечение в диспуты всех учеников класса.

Приложение

Бернулли Иоганн (1667 – 1748 гг.)

Швейцарский математик. Был сотрудником Лейбница в разработке дифференциального и интегрального исчислений, в области которых им был сделан ряд открытий. Дал первое систематическое изложение дифференциального и интегрального исчислений, продвинул разработку методов решения обыкновенных дифференциальных уравнений, поставил классическую задачу о геодезических линиях и нашел характерное геометрическое свойство этих линий, а позднее вывел их дифференциальное уравнение.

Больцано Бернард (1781 – 1848 гг.)

Чешский математик, философ, теолог. Первым (1817) выдвинул идею арифметической теории действительного числа. В его сочинениях можно найти ряд фундаментальных понятий и теорем анализа, обычно связываемых с более поздними исследованиями других математиков. В "Парадоксах бесконечного" (изд. 1851) Больцано явился предшественником Кантора в исследовании бесконечных множеств.

Даламбер Жан Лерон (1717 – 1783 гг.)

Французский математик, механик, философ. Основные математические исследования относятся к теории обыкновенных дифференциальных уравнений. Дал (1748) метод решения дифференциального уравнения второго порядка с частными производными, выражающего малые колебания бесконечной однородной струны (волнового уравнения), в виде суммы двух произвольных функций. Ему принадлежат также важные результаты в теории обыкновенных дифференциальных уравнений с постоянными коэффициентами и систем таких уравнений первого и второго порядков. В теории рядов его имя носит широко употребительный достаточный признак сходимости. В алгебре дал первое (не вполне строгое) доказательство основной теоремы о существовании корня у алгебраического уравнения. Много труда вложил в "Энциклопедию наук, искусств, ремесел", для которой он написал всю физико-математическую часть.

Декарт Рене (1596 – 1650 гг.)

Французский философ, математик, физик. Он является одним из основоположников аналитической геометрии. В его главном математическом труде "Геометрия" (1637) впервые введено понятие переменной величины, создан метод координат (декартовы координаты), введены общепринятые теперь значки для переменных величин (x, y, z, ...) буквенных коэффициентов (a, b, c, ...), степеней (x3, a5, ...). Декарт положил начало ряду исследований свойств уравнений; сформулировал правило знаков для определения числа, положительных и отрицательных корней (правило Декарта); поставил вопрос о границах действительных корней и выдвинул проблему приводимости (представления целой рациональной функции с рациональными коэффициентами в виде произведения двух функций такого же рода); указал, что уравнение третьей степени разрешимо в квадратных радикалах и его корни находятся с помощью циркуля и линейки, когда оно приводимо.

Дирак Поль Адриен Морис (1902 – 1984 гг.)

Английский физик-теоретик, один из основателей квантовой механики. Основные труды в математике по функциональному анализу и математической физике (уравнение Дирака, дельта-функция Дирака, статистика Ферми-Дирака). Нобелевская премия (1933).

К-во Просмотров: 417
Бесплатно скачать Реферат: История развития понятия "функция"