Реферат: История создания и перспективы развития телевидения
1. Преобразование световой энергии оптического изображения в электрические сигналы. Для этого преобразования используют явление фотоэффекта открытого Г. Герцем в 1887 году и фундаментально исследованного в 1888 – 1890 годах профессором Московского университета А. Г. Столетовым.
2. Передача полученных электрических сигналов по каналам связи.
3. Обратное преобразование принятых электрических сигналов в оптическое изображение. Это преобразование впервые осуществил с помощью электронно-лучевой трубки преподаватель Петербургского технологического института Б. Л. Розинг (1907 – 1911 годах).
Таким образом, в изобретении и создании важнейших узлов телевизионных систем весьма большой вклад внесли русские ученые П. И. Бахметьев, Б. Л. Розинг, П. В. Шмаков, С. И. Катаев, а также американцы Ч. Дженкинс и В. К. Зворыкин, англичанин Дж. Л. Берд, немец Ф. Шретер, француз Р. Бартлеми, поляк П. Нипков и многие другие.
В октябре 1967 года телевизионное вещание перешло к новому этапу своего развития – начались регулярные передачи цветного телевидения.
Цветное изображение содержит значительно больше полезной информации, чем черно-белое. Цвет повышает художественную ценность изображения, уменьшает его отличие от оригинала, помогает зрителю полнее и быстрее воспринимать содержание изображения, повышает эмоциональность восприятия.
Цветное телевидение появилось, и начало развиваться, когда черно-белое телевидение уже получило широкое распространение – в эксплуатации у населения находились десятки миллионов черно-белых телевизоров. Поэтому перед разработчиками системы цветного телевидения была поставлена задача – создать такую систему, которая была бы совместимой с существующей системой черно-белого телевидения. То есть, чтобы имелась возможность приема передаваемых цветных передач в черно-белом виде существующими черно-белыми телевизорами и наоборот черно-белые программы принимать цветными телевизорами естественно в черно-белом виде.
В процессе решения поставленной задачи было предложено около трех десятков различных систем цветного телевидения. Однако были стандартизованы и получили практическое применение только три системы:
1. NTSC (NationalTelevisionSystemCommittee – национальный комитет телевизионной системы).
2. PAL (Phase Alternation Line – построчная перемена фазы).
3. CEKAM (от французского слова Secam-SequencedeCouleursAvecMemoire – последовательная передача цветов с запоминанием).
Открытие Столетова. Фотоэффект и фотоэлемент
Преобразование оптического сигнала в электрический основывается на явлении фотоэффекта. Впервые прямое влияние света на электричество было обнаружено немецким физиком Г. Герцем во время его опытов с электроискровыми вибраторами. Герц установил, что заряженный проводник, будучи освещен ультрафиолетовыми лучами, быстро теряет свой заряд, а электрическая искра возникает в искровом промежутке при меньшей разности потенциалов. Замеченное явление было описано Герцем в его статьях 1887-1888 годов, но оставлено им без объяснения, так как физическую природу его он не знал. Не сумели правильно объяснить действие света на заряды и немецкий физик Гальвакс, и итальянский физик Риги, и английский физик Лодж, который, демонстрируя в 1894 году опыты Герца в своей знаменитой лекции «Творение Герца», лишь предположил химическую природу явления. И это неудивительно: электрон будет открыт Джозефом Джоном Томсоном лишь в 1897 году, а без упоминания об электроне объяснить фотоэффект невозможно.
Однако 26 февраля 1888 года заслужено считается одним из замечательнейших дней в истории науки и техники и, в частности, телевидения. В этот день великий русский ученый Александр Григорьевич Столетов (1839-1896) блестяще осуществил опыт, наглядно продемонстрировавший внешний фотоэффект и показавший истинную природу и характер влияния света на электричество.
Первые опыты со светом А.Г. Столетов проводил с обычным электроскопом. Освещая электрической дугой Петрова цинковую пластину, заряженную отрицательно и соединенную с электроскопом, он обнаружил, что заряд быстро исчезал. Положительный же заряд не уничтожался, вопреки имевшемуся утверждению Риги.
Для постановки точных опытов Столетов создал экспериментальный прибор, ставший прообразом современных фотоэлементов.
Экспериментальный прибор Столетова
Прибор состоял из двух плоскопараллельных дисков, один из которых был сетчатый и пропускал световые лучи. К дискам подводилось напряжение от 0 до 250В, причем к сплошному диску подключался отрицательный полюс батареи. При освещении сплошного диска ультрафиолетовым светом включенный в цепь чувствительный гальванометр отмечал протекание тока, несмотря на наличие воздуха между дисками. Продолжая опыты, А. Г. Столетов установил зависимость фототока от величины напряжения батареи и интенсивности светового пучка. Дальнейшие работы привели к созданию первого в мире фотоэлемента, представлявшего собой стеклянный баллон с кварцевым окном для пропускания ультрафиолетовых лучей. Внутрь баллона помещались электроды, один из которых был чувствителен к свету, газ откачивался. Современные фотоэлементы отличаются от первого лишь конструкцией электродов и их структурой.
Фотоэффект - явление вырывания электронов с поверхности вещества под действием света - был назван А.Г. Столетовым актиноэлектрическим разрядом. Электронная природа фотоэффекта была показана в 1899 году Дж. Дж. Томсоном и в 1900 году Ленардом, а полное объяснение было дано лишь в 1905 году А. Эйнштейном на основе квантовой теории. Сам же чувствительный к свету фотоэлемент был назван современниками «электрическим глазом».
Как развитие фотоэлемента в 1934 году советским инженером Кубецким и, независимо, американцем Фарнсвортом был сконструирован фотоэлектронный умножитель (ФЭУ), работа которого основана на использовании вторичных электронов, выбиваемых с анодов прибора вначале светом, а затем падающими на аноды первичными электронами. Таким образом, ФЭУ сочетает в себе фотоэлемент и усилитель с коэффициентом усиления в несколько миллионов единиц.
От «электрического глаза» до современного телевизора огромный путь, на котором нужно было решить три задачи: преобразовать изображение в последовательность электрических сигналов, передать их на большое расстояние и сделать обратное преобразование в приемном устройстве. Для передачи сигналов на большие расстояния идеально подошло радио, достигшее в 20 веке высокого уровня развития, а вот по созданию преобразовательных систем путь был пройден длинный и сложный.
Принцип отображения изображения
Шведскому химику Йёнсу Якобу Берцелиусу, открывшему в 1817 году элемент селен, и в голову не могло прийти, что его открытие станет первой вехой на пути к телевидению. Между тем, это именно так: спустя 50 лет было замечено особое свойство селена и некоторых других материалов изменять свое электрическое сопротивление при освещении. Чем ярче свет, падающий на селеновую пластинку, тем легче она проводит ток.
Если из маленьких кусочков селена сделать мозаику, соединить проводами каждый кусочек с маленькой лампочкой, спроецировать на мозаику изображение и пустить по проводам ток, то лампочки, соединенные с более освещенными кусочками мозаики, будут гореть ярче, а соединенные с затемненными участками - тусклее. Получим изображение, удаленное от оригинала на длину проводов. Впервые такое решение предложил американец Джордж Кэрри в 1880 году, но оно никогда не было осуществлено: уж больно громоздким было бы сооружение при более или менее значительном количестве элементов мозаики. Нужно было искать какой-то другой путь.
Еще в 1833 году бельгийский физик Жозеф Плато наклеил на периферию диска рисунки, запечатлевшие последовательные позы танцующей балерины, и стал вращать диск перед окошком, в котором помещалось лишь одно изображение. Когда диск вращался с какой-то определенной скоростью, зритель видел в окошке балерину, плавно исполнявшую свой танец. Так была открыта важная особенность человеческого зрения - его инерционность, то есть свойство "видеть" какое-то короткое время изображение, когда его уже на самом деле не существовало: предыдущее изображение балерины "сцеплялось" с последующим без зазора, глаз не успевал заметить промежутка между ними.
Инерционность зрения использовали создатели кинематографа: сидя в кинотеатре, мы не замечаем, что на экране каждую секунду сменяют друг друга 24 неподвижных изображений, а напряженно следим за погоней или сочувствуем страданиям любимой актрисы. А для того, чтобы на экране все было так, как в жизни, нужно, чтобы съемка происходила с той же скоростью 24 кадра в секунду.
Механическая развертка
Схема построчной развертки