Реферат: Измерение параметров лазеров
10-8 - 10-7
dE=20
2Ч10-2 -10
10-8 - 10-3
4 ё 15
dE=4
5Ч10-2 - 103
10-8 - 10-3
4 ё 45
dE=22
Так, например, из платиновых нитей диаметром 3…5 мкм можно изготовить решетки с поперечным размером более 10 см и периодом 1 мм. В этом случае общие потери но превышают 4·5·10-3=0.02, а коэффициент пропускания приемного измерительного преобразователя достигает 98%. Постоянная времени прибора не превышает 10-3 с.
Рисунок 1.3 Функциональная схема малоинерционного болометрического измерителя мощности лазерного излучения проходного типа
Если в ПИП чувствительным элементом является термометр сопротивления, который непосредственно воспринимает оптическое излучение и в нем отсутствует конструктивно развитый приемный элемент, то такой ПИП традиционно называют болометром, а в качестве термометра сопротивления могут использоваться не только проволочные проводники, а и пленочные. Приемно-чувствителльные элементы этих приборов часто помещают в вакуумированную оболочку И тогда их называют вакуумными. Глубокоохлаждаемые болометры, работающие при температурах жидкого азота и гелия, используют для измерения сверхмалых потоков излучения (эквивалентную мощность шума можно снизить до 10-14 Вт·Гц-1/2) либо при стремлении достичь максимального быстродействия (субнаносекундный диапазон) .
Калориметры, в которых тепловые процессы не приводят к изменению температуры калориметрического тела (т.е. ТK=TO=const), ю называются изотермическими калориметрами, или калориметрами постоянной температуры. Принцип действия таких калориметров основан либо на использовании эффектов фазового перехода вещества и состоит в измерении количества калориметрического вещества (льда), перешедшего под действием поглощенной энергии лазерного излучения в другую фазу (воду) при температуре существования фазового перехода (0°) (калориметры с фазовым переходом), либо на эффекте компенсации в самом калориметре выделенного излучением тепла за счет теплового эффекта с противоположным знаком (компенсационные калориметры и калориметры с предварительным подогревом). Следует отметить, что на практике такие приборы используются редко, за исключением калориметров с предварительным подогревом. В этих приборах калориметрическое тело предварительно (до поступления и ПИП измеряемого излучения) подогревается до некоторой стационарной температуры, превышающей температуру окружающей среды. При подаче лазерного излучения мощность подогрева вручную или автоматически уменьшают ты, чтобы температура калориметрического тела оставалась прежней. Поглощенная ч в калориметре мощность в этом случае равна изменению мощности подогрева. По такому принципу работает образцовый измеритель мощности лазерного излучения ОИМ-1-1, у которого мощность подогрева уменьшается вручную.
Принцип работы пироэлектрических ПИП основан на использовании пироэлектрического эффекта, наблюдаемого у ряда нецентросимметричных кристаллов при их облучении и проявляющегося в возникновении разрядов на гранях кристалла, перпендикулярных особенной полярной оси. Если изготовить небольшой конденсатор и между его обкладками поместить пироэлектрик, то изменения температуры, обусловленные поглощением излучении, будут проявляться в виде изменения заряда этого конденсатора и могут быть зарегистрированы. Входное сопротивление пироэлектрического приемника является почти чисто емкостным. Поэтому сигнал на его выходе может появиться только при переменном входном сигнале, что вызывает необходимость модуляции излучения при измерении пироприемником излучения.
Выходной сигнал пироэлектрических ПИП пропорционален скорости изменения среднего прироста температуры d(DT)/dt чувствительного элемента, а не величине DT, не на которую реагируют тепловой приемники. Следствием этого является высокое быстродействие приемников (до 10-8), в также высокая их чувствительность(10-7…10-8 Дж), большой динамический диапазон работы (10-8…10 Дж) и широкий спектральный диапазон (0.4…10.6 мкм). Конструктивно чувствительный элемент пироприемника не отличается от колориметрических ПИП(см. рис. 1.2), за исключением самого чувствительного элемента 2, выполненного из пироэлектрика. Среди промышленных разработок измерения малых (до 10-9 Вт/см2) и сверхмалых (до 10-12 Вт/см2) потоков излучения наибольшее применение нашли пироэлектрические преемники на основе титаната бария, триглинсульфата и на основе керамики цирконат-титанат бария. Чувствительные элементы таких ПИП представляют собой плоскопараллельную пластину толщиной 20…100 мкм с нанесенными на обе стороны электродами. На облучаемую сторону пластины наносят поглощающее покрытие либо его роль выполняет полупрозрачный электрод. С помощью сравнительно несложной технологии чувствительные элементы можно изготавливать достаточно сложной формы с размерами приемной площадки от 10-4 до 106.
Обладая рядом преимуществ перед тепловыми преобразователями, пирозлектрические ПИП находят все более широкое применение для измерения энергетических и пространственно-энергетических параметров лазерного излучения.
Фотоэлектрический метод.
Фотоэлектрический метод измерения энергетических параметров лазерного излучения основан на переходе носителей заряда под действием фотонов измеряемого излучения на более высокие энергетические уровни. В качестве фотоэлектрических ПИП используют фотоприемники (ФП), которые делятся на две группы: с внешним и внутренним фотоэффектом. Внешний заключается в испускании электронов под действием фотонов в вакуум, внутренний — в переходе электронов из связанного состояния под действием фотонов в свободное, т.е. в возбужденное состояние внутри материала. В обоих случаях переход происходит при поглощении веществом отдельных квантов излучения, поэтому ФП являются квантовыми приборами. Энергия электромагнитного излучения в них непосредственно превращается в электрическую, которую затем измеряют. Выходной электрический сигнал ФП зависит не от мощности падающего излучения, а от количества квантов излучения и энергии каждого кванта.
Общее выражение преобразования входного оптического сигнала в выходной электрический сигнал, осуществляемого фотоэлектрическим ПИП, можно записать в следующем виде:
I=IФП+IТ=SlЧP+IT (1.5)
где I — полный ток, протекающий через ФП, А; IФП — ток через ФП, вызванный падающим потоком излучения, А; IТ — темновой ток, А; Sl — спектральный коэффициент преобразования, или абсолютная спектральная чувствительность ФП, А/Вт; P — мощность падающего на ФП излучения, Вт.
Ниже кратко рассмотрены основные фотоэлектрические преобразователи, применяемые в средствах измерения мощности и энергии лазерного излучения.
Фотопреобразователи с внешним фотоэффектом. Энергия фотоэлектронов, испущенных с поверхности катода под действием электромагнитного излучения, определяется выражением:
W=hn-w (1.6)
где n — частота излучения, Гц; h — постоянная Планка, (h=6.63Ч10-34 ДжЧс); w — постоянная зависящая от природы материала фотокатода. Испускание электронов имеет место лишь в том случае, когда hn>w= hnО, где nО — пороговая частота, ниже которой фотоэффект невозможен. Длину волны lО=с/nО называют длинноволновой (красной) границей фотоэффекта. Обычно коротковолновая граница фотопреобразователя ограничивается пропусканием входного окна ПИП.
К фотоприемникам на основе внешнего фотоэффекта относятся вакуумные приборы: фотоэлементы (ФЭ) и фотоэлектронные умножители,
Спектральный диапазон вакуумных ФП зависит от материала фотокатода. В настоящее время выпускаемые промышленностью ФЭ и ФЭУ перекрывают диапазон от УФ (0.16 мкм) до ближнего ИК излучения (1,2 мкм — для серебряно-кислородно-цезиевого катода). Абсолютная спектральная чувствительность ФЭ определяется следующим образом:
Sl=QЭФЧl/1.24 (1.7)
где QЭФ — эффективный квантовый выход, l — длина волны излучения, мкм, Sl меняется в зависимости от типа и конструкции прибора (10-3…10-1 мА/Вт).