Реферат: Измерительные трансформаторы тока
По роду установки трансформаторы тока могут быть разделены на следующие группы: для внутренних установок; для наружных установок; для особых, специфических условий эксплуатации, например для работы на морских судах, и т.д.
По способу выполнения первичной обмотки трансформаторы тока могут быть разбиты на две группы: стержневые или одновитковые; многовитковые. В стержневых трансформаторах тока число первичных витков w1 равно единице и число действующих ампер-витков аппарата А×WН равно числу ампер номинального тока I1Н ; в многовитковых оно кратно номинальному току:
,
где w1 больше единицы.
При таком определении к стержневым трансформаторам тока нужно отнести следующие: стержневые трансформаторы тока – первичная обмотка А в виде прямого стержня или прямой трубы проходит через окно сердечника В; петлевые или U-образные – первичная обмотка изогнута в виде буквы U; при этом она проходит через окно сердечника лишь один раз; шинные трансформаторы тока – первичная обмотка в самом аппарате отсутствует, но оставлено место для пропуска шины или пакета шин через окно сердечника на месте установки аппарата; встроенные трансформаторы тока – первичной обмоткой служит ввод выключателя, силового трансформатора и т.д.
По роду изоляции между первичной и вторичной обмотками трансформаторы тока можно классифицировать на следующие группы: с сухой изоляцией: с фарфоровой изоляцией; с бакелитовой (в том числе с бакелитовой конденсаторной) изоляцией; с прессованной изоляцией (бутилкаучук, капрон, бутилметакрилаты и т.д.); с литой изоляцией (эпоксидные смолы, полиэфиры, диизоцианатные соединения и т.д.); с изоляцией в виде паст, сохнущих лаков и т.д.; с воздушной изоляцией; с газовой изоляцией (элегаз). С жидкой или вязкой изоляцией: с бумажно-масляной изоляцией (в том числе с конденсаторной бумажно-масляной); с заливкой компаундом.
По взаимному расположению первичных зажимов и заземлённой опорой трансформаторы тока можно разделить на две группы: опорные трансформаторы тока; проходные трансформаторы тока. Проходные трансформаторы при установке их на перекрытии или в стене могут быть использованы как проходные изоляторы. Таким образом, в проходных трансформаторах первичные зажимы расположены по схеме “вверх-вниз”. В опорных трансформаторах тока первичные зажимы могут быть расположены по одной из следующих схем: “оба вверх”; “один направо, другой – налево”; эта разновидность иногда называется “линейной”.
По конструктивному выполнению можно выделить следующие группы трансформаторов тока: катушечные; шинные; баковые, горшковые; восьмёрочные (звеньевые); петлевые (U-образные); типа “кверлох” и т.д.
По степени автономности трансформаторы тока разделяются на: самостоятельно стоящие; встроенные в другие аппараты.
По числу ступеней трансформации различают: одноступенчатые; каскадные (многоступенчатые).
По частоте первичного тока можно различать: трансформаторы тока для энергосистем с постоянной частотой переменного тока (промышленной – 50, Гц); трансформаторы тока для специальных целей, для работы в цепях с переменной частотой, например на морских судах с электродвижением; трансформаторы тока для работы в цепях с повышенной частотой (400...8000, Гц и выше), например, в схемах электропечей; трансформаторы постоянного тока. трансформатор ток
По климатическим условиям различают: трансформаторы тока для работы в странах с умеренным климатом – с температурой окружающего воздуха от -40°С до +35°С; трансформаторы тока для работы в тропических странах, например с температурой поверхностей, подверженных прямому действию лучей солнца, до +75°С; трансформаторы тока для работы в полярных странах и в районах Крайнего Севера – с температурой окружающего воздуха до -55°С и ниже.
2. ТРАНСФОРМАТОРЫ ТОКА ДЛЯ ВНУТРЕННЕЙ УСТАНОВКИ
2.1 Катушечные трансформаторы тока
Катушечные трансформаторы тока являются самыми простыми, и принадлежат к старейшим типам трансформаторов тока, развившимся на основе конструкций силовых трансформаторов. Первичная и вторичная обмотки выполняются в виде катушек, намотанных на соответствующие изоляционные каркасы.
Катушечные трансформаторы тока весьма компактны и вследствие возможности механизации обмоточных работ дёшевы, но обладают рядом недостатков.
Во-первых, вследствие слабости катушечной изоляцией, разрядное напряжение таких трансформаторов весьма низко. Из-за этого данная конструкция применяется лишь на небольшие номинальные напряжения (0,5...3, кВ) при пониженных требованиях к электрической прочности.
Повышение разрядного напряжения в катушечных трансформаторов тока достигается прежде всего за счёт некоторого увеличения окна сердечника, причём первичная обмотка отдаляется от внутренней поверхности окна сердечника. В зазор между катушкой первичной обмотки и внутренней поверхностью окна сердечника иногда вставляется П-образный барьер из какого-либо изоляционного материала.
2.2 Проходные трансформаторы тока
Эти трансформаторы тока находят самое широкое применение в распределительных устройствах на 6...35, кВ.
Рис. 2.1. Проходной одновитковый трансформатор тока типа ТПОЛ-Р/Р со стержневой первичной обмоткой.
Проходная конструкция имеет в данном случае особую ценность, так как в закрытых распределительных устройствах возможность “пройти” трансформатором тока через перекрытие или через стену позволяет сэкономить соответствующий проходной изолятор.
Проходной многовитковый трансформатор тока в качестве основы имеет два проходных изолятора, скреплённых в средней части.
Через внутренние полости проходных изоляторов протягивается столько витков первичной обмотки, сколько необходимо для достижения расчётных ампер-витков, обеспечивающего требуемый класс аппарата. На средней части втулок, под заземлённым фланцем, располагаются сердечники с вторичными обмотками, которые закрываются кожухом. Обычно ввод первичной обмотки располагается на верхней головке (по отношению к заземлённому фланцу).
2.3 Проходные стержневые трансформаторы тока
В стержневых трансформаторах тока первичная обмотка проходит через окно сердечника только один раз. Следовательно расчётное количество ампер-витков здесь всегда численно равно номинальному току и увеличено быть не может.
Этим обуславливается специфическая особенность стержневых трансформаторов тока: чем больше ток – тем больше точность аппарата, а чем меньше ток - тем меньше его точность.
При заданной точности указанная особенность отражается на конструкции аппарата следующим образом: чем больше ток – тем меньше сечение сердечника, а чем меньше ток – тем больше его сечение.