Реферат: Изучение криптографических методов подстановки (замены)
Чтобы зашифровать первую букву сообщения В, используя первую цифру ключа 2 , нужно отсчитать вторую по порядку букву от В, получается первая буква шифртекста Д.
Следует отметить, что шифр Гронсфельда вскрывается относительно легко, если учесть, что в числовом ключе каждая цифра имеет только десять значений, а значит, имеется лишь десять вариантов прочтения каждой буквы шифртекста. Модификация шифра Гронсфельда с буквенным ключом предполагает смещение на величину, равную номеру буквы ключа в алфавите. При этом улучшается стойкость, за счет увеличения размерности ключевого пространства. Шифр Гронсфельда представляет собой по существу частный случай системы шифрования Вижинера.
Аффинная система подстановок Цезаря
Аффинная система шифрования относится к классу шифров, основанных на аналитических преобразованиях шифруемых данных. В системе шифрования Цезаря использовались только аддитивные свойства множества целых Zm , то есть оно рассматривалось как группа с операцией сложения.
Рассматривая множество целых чисел Zm с двумя операциями сложения и умножения по модулю m, являющееся кольцом, можно получить систему подстановок, которую называют аффинной системой шифрования Цезаря.
Определим в такой системе преобразование Еa ,b : Zm → Zm :
Е a ,b (x )= ax+b mod m ,
где в качестве ключа k = (a , b ) используется пара целых чисел, удовлетворяющих условиям 0 a,b < m , и НОД(а,m )=1.
В данном преобразовании буква, соответствующая числу x в открытом тексте, заменяется на букву шифртекста, соответствующую числовому значению y =(ax +b ) modm (например m =26 в латинском алфавите).
Следует заметить, что преобразование Еa ,b (x ) является взаимно однозначным отображением на множестве Zm только в том случае, если НОД(а ,m )=1, т.е. а и m должны быть взаимно простыми числами.
Это условие взаимной простоты необходимо для обеспечения инъективности отображения Еa ,b (x ) = ax+b mod m . Если оно не выполняется, возможна ситуация, когда две разные буквы отображаются в одну (возникает неоднозначность расшифрования), а некоторые буквы отсутствуют в шифртексте, так как никакие буквы в них не отображаются.
Достоинством аффинной системы является удобное управление ключами - ключи шифрования и расшифрования представляются в компактной форме в виде пары чисел (а, b ). По сравнению с простой системой шифрования Цезаря, количество возможных ключей значительно больше и алфавитный порядок слов при шифровании не сохраняется.
Аффинная система использовалась на практике несколько веков назад, а сегодня ее применение ограничивается большей частью иллюстрациями основных криптологических положений.
Криптосистема Хилла и её частный случай шифр Плэйфеpа
Эти криптосистемы также относятся к классу шифров, основанных на аналитических преобразованиях шифруемых данных как и аффинная система шифрования. Они основаны на подстановке не отдельных символов, а n - гpамм (шифр Хилла) или 2-гpамм (шифр Плэйфеpа). При более высокой криптостойкости они значительно сложнее для реализации и требуют достаточно большого количества ключевой информации.
Алгебраический метод, обобщающий аффинную подстановку Цезаря для шифрования n -грамм, был сформулирован Лестером С.Хиллом.
Шифрование ведется путем выполнения умножения вектора на матрицу. Матрица является ключом шифрования. Открытый текст разбивается на n -граммы - блоки длиной n , равной размерности матрицы и каждая n -грамма х = (х 0, х 1, х 2, … , хn- 1 ) рассматривается как вектор.
Ключевая матрица Т размером п ×п вида Т ={t i ,j }, i,j = 0,1, … ,n - 1 задает отображение, являющееся линейным преобразованием:
Т: Zm,n → Zm,n, Т: х → у; у=Тх,
где .
Для расшифрования шифртекста необходимо выполнить обратное преобразование:
х = Т -1 у.
Для того, чтобы линейное преобразование Т , заданное своей матрицей, могло быть криптографическим преобразованием необходимо чтобы оно было обратимым (или невырожденным), то есть должна существовать обратная матрица Т -1 : такая, что:
Т Т -1 = Т -1 Т = I , где I - единичная матрица.
Доказано, что для этого необходимо, чтобы определитель матрицы det Т , не делился на любое простое р , которое делит m .
Шифры гаммирования
Суть этого метода состоит в том, что символы шифруемого текста последовательно складываются с символами некоторой специальной последовательности, которая называется гаммой . Такой метод представляют как наложение гаммы на исходный текст, поэтому он получил название «гаммирование».
Гамма шифра - это псевдослучайная последовательность, выработанная по заданному алгоритму для шифрования открытых данных и дешифрования зашифрованных данных. Под гаммированием понимают процесс наложения по определенному закону гаммы шифра на открытые данные, он может выполняться как в режиме блочного, так и потокового шифрования. Он является типичным и наиболее простым примером реализации абсолютно стойкого шифра (при использовании бесконечного ключа п = ).
Процесс шифрования заключается в генерации гаммы шифра и наложении полученной гаммы на исходный открытый текст обратимым образом, например с использованием операции сложения по модулю 2.