Реферат: К теории полета лыжника при прыжках с трамплина
ta = V0 sinj0 / (g-ay). (14)
Интегрируя функции (10) и (11), найдем координаты вершины траектории:
xa = V0 cosj0 ta - ?axta2, (15)
ya = V0 sinj0 ta - ?(g-ay)ta2. (16)
Рассмотрим теперь спуск лыжника с вершины траектории. Начальная скорость спуска равна:
Va = V0 cosj0 - axta. (17)
Затем скорость нарастает от скорости (17) вплоть до скорости Vg свободного планирования при полете с больших трамплинов. Определим эту скорость. При свободном полете аэродинамические силы и сила тяжести взаимно уравновешиваются и КСП перестает зависеть от времени.
Уравнение (5) принимает вид:
- ig - KP02Wg / Vg = 0, (18)
где P0 = Vg + U0(Wg +Wg) / 2Vg. (19)
Сложим равенство (18) с комплексно-сопряженным равенством
ig - KP02 Wg / Wg = 0.
В результате получим:
KWg + KWg = 0.
Умножив на KWg, находим |K|2 Wg2 + K2Vg2 = 0,
Wg = -ikVg / |K|. (20)
Подстановка (20) в (18) дает Р02 = g/ |K|.
Выбор противоположного знака в формуле (20) приведет к отрицательному значению Р02, что невозможно. Следовательно,
P0 = (g/|K|)?. (21)
Подставив (20) и (21) в (19), получим для скорости планирования следующее выражение:
Vg = (g/|K|)? - (Kg/|K|)U0. (22)
При встречном ветре скорость свободного полета (22) уменьшается, а при попутном - увеличивается. Если ветра нет, то согласно (21)
Vg = P0.
Линеаризуем уравнение (5), подставив в выражение для коэффициента перед W скорости свободного полета (23) и (22). Тогда оно примет вид:
W = -ig - KbW, (23)
где
b = P02/Vg = g/|K|Vg. (24)
Решение уравнения (23):
W = Vaexp(-KbT) - ig(1-exp(-KbT))/Kb, (25)