Реферат: К теории полета лыжника при прыжках с трамплина
T = t - ta, (26)
обладает тем важным свойством, что при T, стримящемся к бесконечности, оно асимптотически стремится к скорости свободного полета (20). Действительно, при T, стримящемся к бесконечности, показательные функции стремятся к нулю и согласно (24):
W = -ig/Kb = -iKg|K| Vg/|K|2g = Wg.
При T = 0 из формулы (25) следует начальная скорость спуска Va. Поэтому мы полагаем, что функция (25) достаточно хорошо аппроксимирует КСП на всем протяжении полета. Интегрируя (25), получим в параметрической форме следующую аппроксимацию комплексной траектории спуска (КТС): Z = Za + Va(1 - exp(-KbT))/Kb - ig(T- (1 - exp(-KbT))/Kb)/Kb. (27)
При прыжках с больших трамплинов KxbT ~1. Поэтому разложим показательные функции в ряд и ограничимся не двумя, как выше, а четырьмя членами разложения. Тогда более простая аппроксимация КТС имеет вид
Z = Za + Va(t - ?KbT2 + 1/8(Kb)2T3) - ig(? T2 - 1/8KbT3). (28)
Выделив в (28) действительную и мнимую части, получим аппроксимацию траектории спуска в параметрической форме:
X = Xa + VaT - ЅKxbVaT2 + 1/8(Kybg + (Kx2 - Ky2)b2Va)T3, (29)
Y = Ya - 1/8(g - KybVa)T2 + 1/8(Kxbg - 2KxKyb2Va)T3. (30)
При приземлении лыжника траектория полета пересекается с плоскостью
Y + H + (X - N) tg? = 0 (31)
дорожки приземления [5], где Н - глубина опускания траектории расчетного прыжка; N - проекция траектории расчетного прыжка на продольную ось горы приземления, ? - угол наклона дорожки приземления. Подставив (29) и (30) в (31), из кубического уравнения
Tc3 - BTc2 + CTc - D = 0, (32)
где B = 3(g + (Kxtg? - Ky)bVa)/A, (33)
A = (Kx + Kytg?)bg - (2KxKy - (Kx2 - Ky2)tg?)b2Va, (34)
C = bVatg? /A, (35)
D = 6n/A, (36)
n = (N - Xa)tg? - H - Ya, (37)
оценим время спуска tc.
Подстановкой Tc = Q + B/3 (38)
уравнение (32) приводится к виду Q3+ PQ-q= 0, (39)
где P = B2/3 + C, (40)
q = 2B3/27 - BC/3 + D. (41)
Решение кубического уравнения (39) находится по формуле:
Q = ((q2/4 + P3/27)? + q/2)1/8 - ((q2/4 + P3/27)? - q/2)1/8. (42)
Подставив затем время спуска, вычисленное по формулам (33-42), в выражения (29) и (30), определим координаты места приземления лыжника XL, YL и длину прыжка
L = (XL2 + YL2)?. (43)
Например, при общепринятой позе (руки назад) в полете лыжника массой m=70 кг, когда Cx = 0,72, Cy = 0,61, r = 1,23 кг/м3, S = 0,62 м2, Kx = 3,92Ч10-3 м-1, Ky = 3,32Ч10-3 м-1,
j0 = 60, V0 = 30 м/с.