Реферат: Канал последовательной связи на основе МС 8251

Программируемый генератор. Программируемый генератор служит для установки частоты контроллера последовательного интерфейса. Частота следования определяется как отношение частоты задающего генератора к делителю частоты. Частота задающего генератора равна 1.8432Мгц. делитель частоты представляет собой 16–ти битовое число, младший и старший байт которого загружаются по отдельности через регистры буфера делителя. После операции записи любой из регистров делителя делитель перезагружается сразу же. В таблице 1.4 приведены необходимые значения делителя для получения требуемой частоты следования.

Таблица 1.4

Требуемая частота

Следования

(в бодах)

Значение делителя для получения требуемой частоты следования

В десятичном

Виде

В шестнадцатеричном виде

50

2304

0900h

75

1536

0600h

150

1536

0600h

300

384

0180h

600

192

00C0h

1200

96

0060h

1800

64

0040h

2400

48

0030h

3600

32

0020h

4800

24

0018h

7200

16

0010h

9600

12

000Ch

19200

6

0006h

38400

3

0003h

57600

2

0002h

115200

1

0001h

Последовательная передача данных

Микропроцессорная система без средств ввода и вывода ока­зывается бесполезной. Характеристики и объемы ввода и вывода в системе определяются, в первую очередь, спецификой ее применения — например, в микропроцессорной системе управления некоторым промышленным процессом не требуется клавиатура и дисплей, так как почти наверняка ее дистанционно программирует и контроли­рует главный микрокомпьютер (с использованием последовательной линии RS–232C).

Поскольку данные обычно представлены на шине микропроцессора в параллельной форме (байтами, словами), их последовательный ввод–вывод оказывается несколько сложным. Для последовательного ввода потребуется средства преобразования последовательных входных данных в параллельные данные, которые можно поместить на шину. С другой стороны, для последовательного вывода необходимы средства преобразования параллельных данных, представленных на шине, в последовательные выходные данные. В первом случае преобразование осуществляется регистром сдвига с последовательным входом и параллельным выходом (SIPO), а во втором — регистром сдвига с параллельным входом и последовательным выходом (PISO).

Последовательные данные передаются в синхронном или асинхронном режимах. В синхронном режиме все передачи осуществляются под управлением общего сигнала синхронизации, который должен присутствовать на обоих концах линии связи. Асинхронная передача подразумевает передачу данных пакетами ; каждый пакет содержит необходимую информацию, требующуюся для декодирования содержащихся в нем данных. Конечно, второй режим сложнее, но у него есть серьезное преимущество: не нужен отдельный сигнал синхронизации.

Существуют специальные микросхемы ввода и вывода, решающие проблемы преобразования, описанные выше. Вот список наиболее типичных сигналов таких микросхем:

D 0– D 7 — входные–выходные линии данных, подключаемые непосредственно к шине процессора;

RXD — принимаемые данные (входные последовательные данные);

TXD — передаваемые данные (выходные последовательные данные);

CTS — сброс передачи. На этой линии периферийное устройство формирует сигнал низкого уровня, когда оно готово воспринимать информацию от процессора;

RTS — запрос передачи. На эту линию микропроцессорная система выдает сигнал низкого уровня, когда она намерена передавать данные в периферийное устройство.

Все сигналы программируемых микросхем последовательного ввода–вывода ТТЛ–совместимы. Эти сигналы рассчитаны только на очень короткие линии связи. Для последовательной передачи данных на значительные расстояния требуются дополнительные буферы и преобразователи уровней, включаемые между микросхемами последовательного ввода–вывода и линией связи.

Протокол последовательной связи .

Попытка установить последовательный обмен информацией будет бесполезной, если одно из устройств будет включено. Без принимающего устройства передаваемая информация будет бесследно исчезать в канале. К счастью RS – 232 в своих спецификациях выделяет 2 проводника для определения подключения к каждому концу последовательного канала устройства и его состояния ( влкючено ли устройство).

Сигнал, передаваемый по 20 контакту, и называется сигналом готовности терминала (Data Terminal ready – DTR). Он имеет позитивную форму с DTE – устройства для сообщения о том, что оно подключено, обеспечено питание и готово начать сеанс связи.

Аналогично сигнал поступает на контакт 6. Он называется сигналом готовности набора данных (Data set ready – DSR). Этот сигнал так же представляется в позитивном виде и говорит о том что DCE - устройство включено и готово к работе.

В нормальном канале RS – 232 оба эти сигнала должны появиться прежде чем произойдет что-либо. Устройство DTE посылает сигнал DTR устройству DSE, и DSE посылает сигнал DSR устройству DTE. Теперь оба устройства знают, что другое устройство готово к работе.

Обычно аппаратное квитирование модема реализуется при помощи двух различных проводников. Устройства DCE устанавливает положительное напряжение в 5 линии, что говорит о готовности к приёму (Clear to send – CTS). Устройство DTE воспринимает этот сигнал как «путь свободен». С другой стороны канала устройство DTE устанавливает положительное напряжение на 4ом контакте. Этот сигнал называется запрос на передачу (Request to Send – RTS ). Он говорит о том, что DCE должно получить информацию.

Важное правило гласит, если оба сигнала и CTS, RTS не представленные положительным напряжением, информация не будет передаваться ни в одном направлении. Если положительное напряжение отсутствует на контакте CTS, устройство DTE не передаст информацию на DCE. Если же положительное напряжение отсутствует в линии RTS, DCE не передаст информацию DTE.

Ещё один сигнал порождается DCE,который необходим для начала передачи информации. Это сигнал определения передачи информации (Carrier Detect или Data Carrier Detect – CD или DCD). Положительное напряжение в этой линии указывает, что модем DCE получил несущий сигнал с модема с другого конца линии. Если же этот сигнал не выявлен, то последовательность импульсов может быть только шумами в линии. Сигналы CD помогаю DTE узнать, когда следует опасаться помех. В некоторых случаях когда CD не имеют положительного потенциала, DTE будет игнорировать поступающую информацию.

Сигнал контакта 22 называется индикатором вызова (Ring Indicator – RI). Он используется модемом DCE для индикации терминалу DTE, к которому он подключен, что им определено напряжение вызова в телефонной линии. Другими словами, положительное напряжение RI будет терминал, сообщая ему, что кто-то тревожит модем. В большинстве последовательных системах связи этот сигнал может считаться параметрическим сигналом, потому что его отсутствие не помешает передаче информации.

Номинально, передаче информации в последовательных каналах предшествует очень жёсткие протокол. Прежде чем она произойдёт, аппаратура на обеих концах каналах должна быть включена и готова к работе. DTE, компьютер подтвердят сигнал DTR и DCE. Модем подтвердит свой DCR. Когда телефонный вызов разбудит модем он пошлёт RI к компьютеру, который может выдать сообщение на экран. Если модем ведет переговоры с другим модемом на другом конце канала, откуда поступил вызов, местный модем сформирует CD сигнал своему компьютеру. Если они не были включены во время ожидания до вызова, компьютер подтвердит RTS, а модем – CTS.

Введите информацию с клавиатуры для посылки её через модем или пошлите информацию из файла. Если модем может передать информацию достаточно быстро, он установит сигнал CTS, прося PС подождать немного. Когда сигнал CTS снова устанавливается положительным, компьютер воспринимает это как приглашение к передаче информации.

Если во время передачи информации у компьютера появится необходимость выполнить какую-либо важную функцию, например, сохранит часть принятой информации на диск, сигнал RTS будет убран, и модем прекратит передачу информации. Когда компьютер освободится, сигнал RTS будет снова установлен и информация будет вновь передаваться через модем.

Интерфейс RS–232C .

Интерфейс RS–232C является наиболее широко распростра­ненной стандартной последовательной связью между микрокомпью­терами и периферийными устройствами. Интерфейс, определенный стандартом Ассоциации электронной промышленности ( EIA ) , под­разумевает наличие оборудования двух видов: терминального DTE и связного DCE .

Чтобы не составить неправильного представления об интер­фейсе RS–232C, необходимо отчетливо понимать различие между этими видами оборудования. Терминальное оборудование, напри­мер микрокомпьютер, может посылать и (или) принимать данные по последовательному интерфейсу. Оно как бы оканчивает (terminate) последовательную линию. Связное оборудование — устройства, которые могут упростить передачу данных совместно с терминальным оборудованием. Наглядным пример связного оборудования служит модем (модулятор–демодулятор). Он оказывается соединительным звеном в последовательной цепочке между компьютером и телефонной линией.

Различие между терминальными и связными устройствами довольно расплывчато, поэтому возникают некоторые сложности в понимании того, к какому типу оборудования относится то или иное устройство. Рассмотрим ситуацию с принтером. К какому оборудованию его отнести? Как связать два компьютера, когда они оба действуют как терминальное оборудование. Для ответа на эти вопросы следует рассмотреть физическое соединение устройств. Произведя незначительные изменения в линиях интерфейса RS–232C, можно заставить связное оборудование функционировать как терминальное. Чтобы разобраться в том, как это сделать, нужно проанализировать функции сигналов интерфейса RS–232C (таблица 1.5).

Таблица 1.5 Функции сигнальных линий интерфейса RS–232C.

Номер контакта

Сокращение

Направление

Полное название

1

FG

К-во Просмотров: 1779
Бесплатно скачать Реферат: Канал последовательной связи на основе МС 8251