Реферат: Характеристика параметрів сучасних моніторів

1) монітори, засновані на випромінюванні світла, наприклад традиційні CRT монітори і плазмові, тобто це пристрої, елементи екрану яких випромінюють світло в зовнішній світ;

2) монітори типа, трансляції, такі як LCD монітори. Одним з кращих технологічних напрямів у області створення моніторів, який суміщає в собі особливості обох технологій, описаних нами вище, є технологія FED (Field Emission Display). Монітори FED засновані на процесі, який трохи схожий на той, що застосовується в CRT моніторах, оскільки в обох методах застосовується люмінофор, що світиться під впливом електронного променя. Головна відмінність між CRT і FED моніторами полягає в тому, що CRT монітори мають три гармати, які випускають три електронні промені, послідовно скануючи панель, покриту люмінофорним шаром, а в FED моніторі використовуються безліч маленьких джерел електронів, розташованих за кожним елементом екрану і всі вони розміщуються в просторі по меншій глибині, ніж потрібно для CRT. Кожне джерело електронів управляється окремим електронним елементом, так само як це відбувається в LCD моніторах і кожен піксель потім випромінює світло, завдяки дії електронів на люмінофорні елементи, як і в традиційних CRT моніторах. При цьому FED монітори дуже тонкі.

8. LEP monitors

Протягом останніх 30 років увага багатьох учених була прикована до полімерних матеріалів (простіше кажучи - пластикам), що володіють властивостями провідності і напівпровідності.

Найцікавішим застосуванням пластикових напівпровідників на даний момент є створення різного роду пристроїв відображення інформації на їх базі.

Про те, що напівпровідний пластик під дією електричного струму може випускати фотони (тобто світитися), знали давно. Але украй низька (0,01%) квантова ефективність цього процесу (відношення числа випущених фотонів до пропущених через пластик зарядів) робила практичне застосування цього ефекту неможливим. За останні час компанія CDT зробила прорив в цьому напрямі, довівши квантову ефективність двуслойного пластика до 5% при випромінюванні жовтого світла, що порівняно з ефективністю сучасних неорганічних світлодіодів (LED). Крім підвищення ефективності, вдалося розширити і спектр випромінювання. Тепер пластик може випускати світло в діапазоні від синього до ближнього інфрачервоного з ефективністю близько 1%.

На сьогодні компанія може представити монохромні (жовтого свічення) LEP-дисплеї, що наближаються по ефективності до рідкокристалічних дисплеїв LCD (Liquid Crystal Display), поступливі їм по терміну служби, але що мають ряд істотних переваг. Оскільки багато стадій процесу виробництва LEP- дисплеїв співпадають з аналогічними стадіями виробництва LCD, виробництво легко переобладнати. Крім того, технологія LEP дозволяє наносити пластик на гнучку підкладку великої площі, що неможливе для неорганічного світлодіода (там доводиться використовувати матрицю діодів).

Оскільки пластик сам випромінює світло, не потрібні підсвічування і інші хитрощі, необхідні для отримання кольорового зображення на LCD-моніторі. Оскільки LEP-дисплей працює при низькій напрузі живлення (менше 3 V) і має малу вагу, його можна використовувати в портативних пристроях, що працюють від батарей.

LEP-дисплей має малий час перемикання (менше 1 мікросекунди), тому його можна використовувати для відтворення відеоінформації. Оскільки шар пластика дуже тонкий, можна використовувати спеціальні покриття для досягнення високої контрастності зображення навіть при сильному зовнішньому засвічені.

9. Відеоадаптери

У оригінальній моделі IBM PC на екрані монітора могла відображатися тільки алфавітно-цифрова інформація. Перший відеоадаптер називався Monochrome Display and Parallel Printer Adapter (MDPPA), або MDA. Роздільна спроможність адаптера MDA дозволяла відображати на моніторі 720 крапок по ширині і 350 крапок (пікселів) по висоті екрану. Графічного режиму в адаптері передбачено не було, а алфавітно-цифрова інформація відображалася на екрані в 25 рядків по 80 символів в кожній.

Через всього декілька місяців після випуску першої моделі PC з MDA фірма IBM розробила відеоадаптер, який підтримував не тільки графічне зображення, але і кольори, що, до речі, особливо підкреслювалося навіть в його назві. Адаптер CGA (Color Graphics Adapter) забезпечував відображення чотирьох кольорів при роздільній спроможності 320х200 пікселів. Трохи пізніше стало зрозуміло, що графіка на CGA, навіть кольорова, не завжди задовольняє вирішуваним задачам, зокрема, із-за низької роздільної спроможності. Перший відеоадаптер для IBM PC, що в якійсь мірі відповідав цим потребам, був створений на фірмі Hercules в 1982 році. Цей адаптер HGC (Hercules Graphics Card) підтримував на монохромному моніторі роздільну спроможність 720х350 крапок.

Новою розробкою фірми IBM став поліпшений графічний адаптер EGA (Enhanced Graphics Adapter), який з'явився на світ вже в 1984 році. Цей адаптер не тільки дозволяв повністю емулювати всі режими робіт попередніх адаптерів (MDA, CGA), але і, зрозуміло, мав інші додаткові можливості. Наприклад, при роздільній спроможності 640х350 пікселов він міг одночасно відтворювати 16 кольорів з палітри в 64 кольори (саме для цього адаптера використовувалися сигнали RrGgBb).

Відеоадаптер VGA (Video Graphics Array) був оголошений фірмою IBM ще в 1987 році, й повністю був сумісний з адаптером ЕGА, що забезпечило спадкоємність існуючого програмного забезпечення. Незабаром VGA став фактичним стандартом, що включає всі режими попередніх адаптерів і що розширює їх можливості по роздільній спроможності і кількості відтворних кольорів. Так, при використанні адаптера VGA забезпечується роздільна спроможність 640х480 пікселів і на екрані монітора може відтворюватися 16 кольорів. При роздільній спроможності 320х200 відеоадаптер VGA відтворював 256 кольорів — популярний режим ігрових програм.

Всі режими VGA, виключаючи графічні з дозволом 640х480 пікселів, використовують вертикальну розгортку з частотою 70 Гц, що істотно знижує мерехтіння екрану, що відчувається користувачем. Частота розгортки для режиму 640х480 крапок складає тільки 60 Гц. Основними вузлами VGA-адаптера є власне відеоконтролер (як правило, замовлена ВІС-ASIC), відео-BIOS, відео пам’ять, спеціальний цифро-аналоговий перетворювач з невеликою власною пам'яттю (RAMDAC, Random Access Memory Digital to Analog Converter) кварцовий осцилятор (один або декілька) і мікросхеми інтерфейсу з системною шиною.

Після того, як стало ясно, що стандарт VGA практично повністю себе вичерпав, більшість незалежних розробників почали його покращувати як за рахунок збільшення роздільної спроможності і кількості відтворних кольорів, так і введення нових додаткових можливостей. Хоча всі виробники забезпечували сумісність своїх виробів з VGA, додатковими відео режимами і можливостями адаптери часто не співпадали, оскільки кожен вважав потрібним робити це по-своєму.

Зрозуміло, що вже саме поняття SVGA, не пов'язане жорстко з конкретними режимами роботи адаптера, вносило серйозну плутанину.

Асоціація VESA запропонувала свій стандарт на нові відео адаптери. Спочатку VESA рекомендувала використовувати режим з дозволом 800х600 крапок і підтримкою 16 кольорів як стандартний. Наступні - 256-кольорові режими з дозволом 640х480, 800х600 і 1024х768 крапок, а також 16-кольоровий режим з дозволом 1024х768 пікселів і так далі.

Сучасні відео адаптери дозволяють використовувати режим 1024х768 і вище використовуючи при цьому 24 і 32-бітовий колір (TrueColor). Для цього вони володіють великим об'ємом відео пам'яті від 4-16 Мбайт а також підтримують специфікацію 3Dfx, що дозволяє швидше відтворювати колірні спецефекти.

На величину максимально підтримуючу монітором роздільну спроможність безпосередньо впливає частота горизонтальної розгортки електронного променя, вимірювана в kHz (Кілогерцах, кГц). Значення горизонтальної розгортки монітора показує, яке граничне число горизонтальних рядків на екрані монітора може прокреслити електронний промінь за одну секунду. Відповідно, чим вище це значення (а саме воно, як правило, указується на коробці для монітора) тим вищу роздільну спроможність може підтримувати монітор при прийнятній частоті кадрів. Гранична частота рядків є критичним параметром при розробці CRT монітора. У таких моніторах використовуються магнітні системи відхилення електронного променя, що є обмотками з досить великою індуктивністю. Амплітуда імпульсів перенапруження на котушках рядкової розгортки зростає з частотою рядків, тому цей вузол виявляється одним з самих напружених місць конструкції і одним з головних джерел перешкод в широкому діапазоні частот. Потужність, споживана вузлами рядкової розгортки, також є одним з серйозних чинників моніторів, що враховуються при проектуванні.

Частота регенерації або оновлення (кадрової розгортки для CRT моніторів) екрану це параметр, що визначає, як часто зображення на екрані наново перемальовувалося. Частота регенерації вимірюється в Hz (Герцах, Гц), де один Гц відповідає одному циклу в секунду. Наприклад, частота регенерації монітора в 100 Hz означає, що зображення оновлюється 100 разів в секунду. Мерехтіння зображення (flicker) приводить до стомлення очей головним болям і навіть до погіршення зору. Відмітимо, що чим більший екран монітора, тим більше помітно мерехтіння, особливо периферійним (бічним) зором, оскільки кут огляду зображення збільшується. Значення частоти регенерації залежить від використовуваної роздільної здатності, від електричних параметрів монітора і від можливостей відеоадаптера. Мінімально безпечною частотою кадрів вважається 75 Hz, при цьому існують стандарти, що визначають значення мінімально допустимої частоти регенерації. Вважається, що чим вище значення частоти регенерації, тим краще, проте дослідження показали, що при частоті вертикальної розгортки вище 110 Hz очі людини вже не можуть відмітити ніякого мерехтіння. Нижче ми приводимо таблицю з мінімально допустимими частотами регенерації моніторів за стандартом TCO’99 для різної роздільної спроможності:


Таблиця 1

Діагональ монітора Частота регенерації Роздільна спроможність
14" - 15" >= 85 Hz >= 800x600
17" >= 85 Hz >= 1024x768
19"-21" >= 85 Hz >= 1280x1024
> 21" >= 85 Hz >= 1280x1024

Відмітимо, що у таблиці 1 приведені мінімально допустимі параметри, а рекомендована частота регенерації >= 100 Hz.

Щоб дізнатися настройки свого монітора, необхідно відкрити Панель управління – Екран.

Перейдемо до питання про стандарти безпеки. На сучасних моніторах можна зустріти наклейки з абревіатурою TCO або MPRII. На дуже старих моделях зустрічаються ще і написи "Low Radiation", які насправді ні про що не говорять. Просто колись, виключно в маркетингових цілях, виробники з Південно-східної Азії привертали цим увагу до своєї продукції. Ніякого захисту подібний напис не гарантує.

10. Сертифікати TCO і MPRII

Всі ми хоч раз чули про те, що монітори небезпечні для здоров'я. З метою зниження ризику для здоров'я різними організаціями були розроблені рекомендації по параметрах моніторів, слідуючи яким виробники моніторів борються за наше здоров'я. Всі стандарти безпеки для моніторів регламентують максимально допустимі значення електричних і магнітних полів створюваних монітором при роботі. Практично в кожній розвиненій країні є власні стандарти, але особливу популярність у всьому світі (так склалося історично) завоювали стандарти, розроблені в Швеції і відомі під іменами TCO і MPRII. Розповімо про них докладніше:

- TCO

«TCO (The Swedish Confederation of Professional Employees, Шведська Конфедерація Професійних Колективів Робочих), членами якої є 1,3 мільйонів Шведських професіоналів, організаційно складається з 19 об'єднань, які працюють разом з метою поліпшення умов роботи своїх членів. Ці 1,3 млн. членів представляю широкий спектр робочих і службовців з державного і приватного сектора економіки.

Вчителі, інженери, економісти, секретарі і няньки лише небагато з груп, які всі разом формують TCO. Це означає, що TCO відображає великий зріз суспільства, що забезпечує їй широку підтримку».

Це була цитата з офіційного документа TCO. Річ у тому, що більше 80% службовців і робочих в Швеції мають справу з комп'ютерами, тому головне завдання TCO це розробити стандарти безпеки при роботі з комп'ютерами, тобто забезпечити своїм членам і всім іншим безпечне і комфортне робоче місце. Окрім розробки стандартів безпеки, TCO бере участь в створенні спеціальних інструментів для тестування моніторів і комп'ютерів.

Стандарти TCO розроблені гарантувати користувачам комп'ютерів безпечну роботу. Цим стандартам повинен відповідати кожен монітор, що продається в Швеції і в Європі. Рекомендації TCO використовуються виробниками моніторів для створення якісніших продуктів, які менш небезпечні для здоров'я користувачів. Суть рекомендацій TCO полягає не тільки у визначенні допустимих значень різного типа випромінювань, але і у визначенні мінімально прийнятних параметрів моніторів, наприклад підтримуваних роздільну спроможність, інтенсивності свічення люмінофора, запас яскравості, енергоспоживання, галасливість і т.ін. Більш того, окрім вимог в документах TCO приводяться докладні методики тестування моніторів. Деякі документи і додаткову інформацію можна знайти на офіційному сайті TCO: tco-info.com

До складу розроблених TCO рекомендацій сьогодні входять три стандарти: TCO’92, TCO’95 і TCO’99, неважко здогадатися, що цифри означають рік їх ухвалення.

К-во Просмотров: 148
Бесплатно скачать Реферат: Характеристика параметрів сучасних моніторів