Реферат: Характеристика снежного покрова

Влажность снега — количество воды, которое снежный покров содержит в данный момент. Она является очень важной его физической характеристикой и определяется калориметрическим способом.

Коэффициент отражения солнечной радиации снегом значительно выше, чем у льда и, тем более, у воды.

Коэффициент поглощения солнечной радиации снегом также высокий; поглощается она самым верхним слоем снега и поэтому не доходит до его подстилающей поверхности.

Электрические, радиоактивные и акустические свойства снега в последнее время приобретают все большее значение, но они пока изучены недостаточно.

Сухой снег, прежде всего, характеризуется малой электрической проводимостью, что позволяет располагать на его поверхности даже не изолированные провода. Выполненные исследования для сухого снега плотностью порядка 100 — 500 кг/м3 при температуре от -2 до -16 °С показали, что удельное электрическое сопротивление ρэ довольно высокое (2,8·105 — 2,6·107 Ом · м) и близко к удельному сопротивлению сухого льда. Напротив, влажный снег обладает малым электрическим сопротивлением, падающим до 10 Ом·м.

Сухой снежный покров является диэлектриком. Диэлектрическая проницаемость снежного покрова ε зависит от частоты электромагнитных волн, их длины и от состояния снега (температуры, плотности, структуры, влажности). Диэлектрическая проницаемость снега значительно меньше, чем льда (εол = 73... 95, ε∞л =3... 8), и увеличивается с возрастанием его плотности и влажности.

Акустические свойства снега проявляются, например, в скрипе под лыжами, полозьями саней, под ногами пешеходов и в других случаях. Скрип снега зависит от его плотности, давления на него и от его температуры. Замечено, что скрип слышен при температуре от -2 до -20°С; ниже этой температуры скрип не слышен. Связь скрипа с температурой можно объяснить тем, что с понижением температуры увеличивается прочность снежных кристаллов и поэтому излом их под давлением сопровождается звуком. При температуре ниже -20°С снежинки достаточно прочны и очень мало ломаются под давлением.

Механические свойства снега имеют большое значение при использовании его в качестве строительного материала, при транспортировке по нему грузов, а также при изучении снежных лавин.

Установлено, что зависимость трения скольжения по снегу различных тел от температуры снега неоднозначна. Наилучшие условия для движения лыж и саней наблюдаются при температуре от -3 до -10°С. С увеличением плотности снега и скорости движения коэффициент трения скольжения уменьшается.

Сопротивление снега растяжению исследовалось по разрыву образца от собственного веса путем пропиливания заранее намеченной шейки. Свежевыпавший снег оказывает небольшое, практически равное нулю сопротивление разрыву, а в уплотнившемся снеге сопротивление разрыву возрастает с увеличением плотности и достигает значения 0,027·105 Па. Сопротивление разрыву влажного снега меньше, чем сухого. В целом сопротивление снега разрыву зависит от его температуры, плотности и структуры.

Сжатие снега под действием нагрузки является одной из его характеристик. В опытах установлено, что слежавшийся сухой снег разрушается при нагрузке около 1,5·105 Па. Прочность снега значительно увеличивается после добавления воды и замерзания ее. Несомненно, что прочность снега на сжатие зависит от его плотности, но надежных данных по этому вопросу нет.

Твердость — это свойство вещества сопротивляться внедрению в него другого тела, теоретически не деформируемого. Она характеризует прочность снега и, в частности, несущую способность снежного покрова. Мерой твердости является размер следа (царапина, углубление), оставляемого на исследуемом материале абсолютно (условно) твердым телом, внедряемым под определенной нагрузкой.

По техническим условиям, в зимних снеговых дорогах плотность и твердость снега, как минимум, должны быть равны 600 кг/м3 и 106 Па.

Вязкость снега играет большую роль в процессах формирования снежных обвалов. Свежий снег обладает большей пластичностью и меньшей вязкостью по сравнению с плотным снегом и тем более с льдом. Укрупнение зерен снега — фирнизация — ведет к уменьшению его пластических свойств.

Снежный покров в течение всего периода своего существования подвергается воздействию различных физических и механических факторов, приводящих к непрерывному изменению его структуры, состава и объема. Эти факторы и оказываемые ими воздействия еще далеко недостаточно изучены.

К физическим факторам и процессам можно отнести режеляцию, рекристаллизацию, возгонку и сублимацию, гелио- и геотепловые воздействия. К механическим факторам относятся сила тяжести и ветер.

Режеляция (повторное смерзание) заключается в плавлении и повторном смерзании ледяных кристаллов, образующих снежинки, под влиянием удельного давления. Режеляция снега протекает с заметной интенсивностью лишь при температуре, близкой к 0°С, т. е. при температуре, при которой не требуется большого удельного давления, чтобы вызвать плавление льда.

Рекристаллизация представляет собой физический процесс, при котором атомы молекул перескакивают с кристаллической решетки одного кристалла на решетку другого кристалла и обусловливают срастание отдельных кристаллов (снежинок).

В твердых телах существует некоторое количество атомов и молекул, кинетическая энергия которых достаточна для перехода в газообразное состояние. Процесс перехода вещества из твердой фазы в газообразную, минуя жидкую, называют возгонкой, а процесс кристаллизации вещества из пара — сублимацией . С признаком возгонки какого-либо твердого тела мы встречаемся при ощущении его запаха в окружающем воздухе.

Так как в снежном покрове имеется большое количество межкристаллических пор с поверхностями кристаллов очень малого радиуса и разных направлений кривизны, то в его толще распределение парциального давления водяного пара будет очень неравномерно. Водяной пар, образовавшийся на острых ребрах кристалликов, будет стекать во впадины и, насыщая здесь воздух, перейдет в воду и замерзнет. Вследствие этого возникает процесс округления кристалликов льда и увеличения их объема, т. е. происходит так называемая фирнизация снега. Процесс этот наблюдается при изотермии и активизируется при наличии температурной стратификации. В снежном покрове имеет место значительный температурный перепад, так как его поверхность охлаждается намного ниже нуля по сравнению с приземным слоем. В связи с этим создается дополнительная разность парциального давления водяного пара в снежном покрове с градиентом, направленным снизу вверх, что еще более усиливает миграцию водяного пара и фирнизацию снега.

Повторное таяние кристаллов льда и замерзание воды также способствуют фирнизации снега. Таяние кристаллов начинается с их выступающих частей — углов, лучей, ребер. Поэтому частично оттаявший кристалл приобретает округлую форму в виде зерна. При повторном таянии кристаллические зерна увеличиваются в размерах за счет попадания на них капелек воды с соседних кристалликов и т. д. При этом в снежном покрове увеличиваются поры и на их стенках осаждается иней, обусловленный сублимацией. Процесс ускоряется за счет гравитационной воды, проникающей сверху в результате таяния самого

верхнего слоя снежного покров.

Важное экологическое значение имеет воздухопроницаемость С.п. Благодаря движению воздуха через снег возможна перезимовка растений под С.п., распространение запахов из-под снега, помогающее северным оленям отыскивать ягель, а лисам — мышей. Радиационные характеристики С.п. находятся в зависимости от состояния снега. Альбедо (см.) снега для суммарной солнечной радиации зимой (при отсутствии загрязнений) может достигать 95%, но по мере загрязнения и уплотнения альбедо снижается. Средние значения альбедо для свежевыпавшего сухого снега — 82%, мокрого — 72%, старого сухого 65% и мокрого 50% (по данным для европейской части России). Проникновение солнечной радиации в зависимости от структуры С.п. ограничивается глубиной 30—50 см для сухого снега и 10—15 см для влажного. Способность снега пропускать свет играет важную роль в развитии рано зацветающих растений (подснежники, солданеллы и др.). Снег непрозрачен для длинноволновой радиации, это приводит к своеобразному парниковому эффекту: при небольшой мощности сухого снега коротковолновая солнечная радиация, проникая через снег, прогревает почву и при слабоотрицательных температурах воздуха может вызвать стаивание снега снизу. Ночное излучение и дневное отражение солнечной радиации С.п. приводят к сильному охлаждающему действию снежного покрова на располагающийся под ним воздух: наиболее низкие температуры обычно возникают в ясные ночи непосредственно под свежевыпавшим снегом. На транспорте и в строительстве снег наносит большой ущерб в результате снежных заносов, обвалов и лавин в горах.

1.2 Зависимость снежного покрова от погодных условий.

Распределение устойчивого С.п. на Земле обусловлено географической зональностью и общей циркуляцией атмосферы, а также зависит от рельефа и характера растительности. С.п. ежегодно покрывает на Земле от 100 до 126 млн. км2. Из этой площади около 2/3 приходится на сушу, 1/3 — на морские льды. Максимальную площадь на суше С.п. занимает к концу зимы северного полушария (96 млн.км2), минимальную — к концу зимы южного полушария (44 млн.км2). Общая масса воды в С.п. Земли составляет в среднем 1•1013 т. Около 30% ежегодно образующегося снега служат источником питания ледников. Территории, где ежегодно образуется устойчивый снежный покров с различной продолжительностью залегания, находятся в Сев.полушарии примерно севернее 40о с.ш., в Южном полушарии — Антарктида и горные районы Южной Америки. В России устойчивый снежный покров в среднем появляется на Новосибирских островах в конце августа, на северо-востоке — в начале октября, в средней полосе — в начале ноября и на юге — в декабре.

1.3. Закономерности формирования снежного покрова на Русской равнине.

Зимние циклонические осадки образуют снежный покров высотой 60—70 см, который лежит до 220 дней в году, к юго-западу продолжительность залегания снежного покрова сокращается до 3—4 месяцев в году, а средняя многолетняя высота его сокращается до 10—20 см. По мере продвижения в глубь материка циклоническая деятельность и связанный с ней западный перенос на юге Восточно-Европейской равнины ослабевает. Вместо этого возрастает повторяемость антициклонов. В условиях устойчивых антициклонов усиливаются процессы трансформации воздушных масс, в результате которых влажный западный воздух быстро преобразуется в континентальный. В силу этого атмосферных осадков в южной части равнины выпадает 500—300 мм в год и их количество быстро уменьшается в юго-восточном направлении до 200 мм и местами меньше. Снежный покров маломощный и лежит непродолжительное время: 2—3 месяца на юго-западе. На увеличение годовых сумм осадков оказывает влияние рельеф. Например, в Донецком кряже выпадает 450 мм осадков, а в окружающей его степи — 400 мм. Разница в годовой сумме осадков между Приволжской возвышенностью и низменным Заволжьем составляет около 100 мм. В южной половине равнины максимум осадков приходится на июнь, а в средней полосе — на июль. Южная половина характеризуется наименьшей, а северная половина — наибольшей относительной влажностью. Показатель увлажнения на севере территории более 0,60, а на юге 0,10.

Практически осадки выпадают из всех воздушных масс, но основная часть их связана с атлантическим воздухом умеренных широт. На юго-запад много влаги приносит тропический воздух. Выпадение осадков главным образом обусловлено циркуляцией воздушных масс на арктическом и полярном фронтах, и только 10% их дают внутримассовые процессы в летний период.

К-во Просмотров: 642
Бесплатно скачать Реферат: Характеристика снежного покрова