Реферат: Химическая технология органических веществ
6) малое содержание ароматических углеводородов в дизельных фракциях, которые преимущественно состоят из производных циклопентана и циклогексана и имеют высокие цетановые числа и относительно низкие температуры застывания.
Большое значение уделяется в настоящее время катализаторам на циолитной, обладающих высокой гидрокрекирующей активностью и хорошей изберательностью.
В случае переработки тяжелого сырья наибольшую опасность для дезактивации катализаторов гидрокрекинга представляют, кроме азотистых оснований, асфальтены, и прежде всего содержащиеся в неметаллы, такие как никель и ванадий. Поэтому гидрокрекинг сырья содержащего значительное количество гетеро- и металлоорганических соединений, вынужденно проводят в две и более ступеней. На певой; ступени в основном проходит гидроочистка и неглубокий гидрокрекинг полициклических ароматических углеводородов, а также деметаллизация. Катализаторы этой ступени идентичны катализаторам гидроочистки. На второй ступени облагороженное сырье перерабатывают на катализаторе с высокой кислотной и умеренной гидрирующей активностью.
При гидрокрекинге нефтяных остатков исходное сырье целесообразно подвергнуть предварительной деметаллизации и гидрообессериванию на серо- и азотостойких катализаторах с высокой металлоемкостью и достаточно высокой гидрирующей, но низкой крекирующей активностью.
В процессе селективного гидрокрекинга в качестве катализаторов применяют модифицированные цеолиты (морденит, эрионит и др.) со специфическим молекулярно-ситовым действием: поры цеолитов доступны только для молекул нормальных парафинов.
Одно из основных направлений совершенствования гидрокрекинг дистиллятного сырья - создание высокоэффективных стабильных, легко регенерируемых катализаторов. В настоящее время наряду с модернизированными аморфными катализаторами широко применяются цеолитные катализаторы. Использование цеолитных катализаторов в процессах гидрокрекинга, направленное на максимальное производстве бензина, позволяет перейти от двухступенчатой схемы к квазиодноступенчатой, т. е. исключить стадию фракционирования после первой ступени. Цеолитсодержащие катализаторы обеспечивают максимальный выход средних дистиллятов, высокую гибкость и возможность проведения процессов в более мягком режиме.
Однако широкое внедрение гидрокрекинга сдерживается высокими капиталовложениями и эксплуатационными затратами, обусловленными необходимостью проведения процесса при высоком давлении и с большим расходом водорода. В этой связи интенсивно применяются процессы легкого гидрокрекинга (ЛГК), которые позволяют при умеренном давлении (менее 10 МПа) получать достаточне высокий выход средних дистиллятов и значительное количество высококачественного сырья ККФ. Современные катализаторы гидрокрекинга дают возможность реализовать этот процесс на обычных установках гидроочистки вакуумного газойля при их небольшой реконструкции.
Гидрокрекинг является одним из наиболее перспективных процессов деструктивной переработки тяжелого дистиллятного и остаточного сырья. В последние годы резко интенсифицируются работы по совершенствованию процессов гидрокрекинга остатков, основанных на использовании реакторов со стационарным, кипящим или суспендированным слоем катализаторов. Однако вследствие высокой скорости дезактивации катализаторов примесями, содержащимися в остаточном сырье, прямой гидрокрекинг на стационарном слое неэкономичен. Предотвратить снижение активности катализаторов гидрокрекинга остатков можно двумя способами.
1. Эксплуатация установок гидрокрекинга в режиме низких степеней превращения - варианты легкого гидрокрекинга (ЛГК) с переработкой остатков на установках гидрообессеривания. Существуют различные варианты включения установок ЛГК остатков в общую схему НПЗ, обеспечивающие высокую гибкость в отношении производства моторных топлив, например ЛГК в сочетании с последующей деасфальтизацией или термической обработкой.
2. Предварительное облагораживание сырья посредством деасфальтизации растворителем, термической (коксование, висбрекинг) или гидрогенизационной обработки.
В современной нефтеперерабатывающей промышленности наиболее широко используется сочетание гидрокрекинга (ГК) с предварительной деасфальтизацией остатков растворителем и последующей переработкой деасфальтизата и асфальтита. Для утилизации последнего помимо традиционных способов (сжигание и парокислородная газификация) существует способ ГК асфальтита на гомогенном катализаторе, с помощью которого достигается высокая степень деметаллизации 190 %) и конверсии от 70 до 80 % асфальтенов. Однако при переработке остатков и тяжелых нефтей с содержанием металлов более 500 мг/кг деасфальтизация растворителем в качестве стадии подготовки сырья неэффективна. Для этого существуют процессы каталитической гидродеасфальтизации и гидродеметаллизации.[206 стр,1]
4.Сырье
Современный процесс гидрокрекинга позволяет перерабатывать практически все нефтяные дистилляты - как прямогонные, так и вторичного происхождения. Происхождение сырья имеет решающее значение для условий проведения процесса, а также оказывает существенное влияние на свойства полученных продуктов. Технологические условия гидрокрекинга, а также его аппаратурное оформление сильно различаются в зависимости от свойств сырья.
Большое значение для выбора условий процесса гидрокрекинга имеет химический состав сырья и особенно - содержание ароматических углеводородов, соединений азота и серы, а также содержание смол и асфальтенов. Концентрация этих соединений в нефтяных дистиллятах зависит от их температуры кипения и молекулярной массы. Качество сырья для процесса гидрокрекинга предопределяет схему его переработки. Особенно важны температурные пределы выкипания нефтяных дистиллятов, так как с ростом средней температуры кипения сырья наблюдается увеличение содержания в них ароматических углеводородов, а также соединений серы и азота. В высококипящих вакуумных дистиллятах возможно присутствие высокомолекулярных смол и асфальтенов.
В литературе для оценки качества дистиллята с учетом как его пределов кипения, так и происхождения употребляется специальный показатель - характеризующий фактор.
Обычно он обозначается CF (Characterization factor) и описывается зависимостью
где T - средняя температура кипения дистиллята, К; р — плотность дистиллята, г/см3
Значение плотности в определенной степени учитывает происхождение дистиллята: чем больше выражен ароматический характер сырья, тем выше плотность дистиллятов в данных пределах кипения. Дистилляты, полученные каталитическим крекингом и термическими процессами, имеют более высокую плотность, чем прямогонные.
Азотсодержащие соединения сырья являются каталитическими ядами (особенно для аморфного алюмосиликатного носителя). Для их удаления необходима двухступенчатая схема (с предварительной глубокой гидроочисткой).
Использование цеолитов, характеризующихся меньшей чувствительностью к азотистым соединениям, позволяет поддерживать умеренное давление водорода.
Присутствие соединений серы в сырье не представляет значительных трудностей в процессе гидрокрекинга. Вследствие низких значения энергии связи С-S такое сырье легко подвергается гидрокрекинг. Глубокая очистка сырья от сернистых соединений требуется лишь при использовании платиновых и палладиевых катализаторов, весьма чувствительных к отравлению серой. Гидрокрекинг нефтяных дистиллятов, содержащих большое количество серы, до 3 % (мас), происходит с повышенным расходом водорода.
Сырье, поступающее на гидрокрекинг, не должно содержать высо комолекулярных конденсированных соединений, а также асфальтенов. Превращение этих соединений в условиях гидрокрекинга приводит к образованию кокса, который оседает на поверхности катализатора, что способствует быстрой дезактивации последнего. Содержание в небольших количествах этих соединений в вакуумных дистиллятах или деасфальтизатах, которые поступают на переработку, не имеет существенного значения. Если содержание коксообразующих соединений велико, то сырье подвергают гидрированию на первой ступени, а на вторую ступень подают облагороженное сырье.
Целесообразно также удаление из сырья тяжелых металлов (никеля, ванадия, железа), содержащихся в виде металлоорганичеких соединений. Указанные металлы отлагаются на катализаторе и снижают его активность.
Разработан ряд технологий, позволяющих существенно (от 80% до 90 %) снизить концентрацию тяжелых металлов в сырье гидрокрекинга. Наиболее эффективный метод - предварительное гидрогенизационное облагораживание.
В настоящее время к сырью процесса гидрокрекинга (вакуумному дистилляту) предъявляют следующие требования по содержанию дезактивирующих компонентов и коксуемости (не более):
Содержание:
азота, % (мас.) 0,12
тяжелых металлов, г/т 2