Реферат: Химически стойкие материалы для защиты
строительных конструкций от коррозии
Коррозия металла и бетона
Широкое применение новых высококачественных материалов и повышение долговечности конструкций за счет проведения противокоррозионной защиты – одна из важных народнохозяйственных задач. Практика показывает, что только прямые безвозвратные потери металла от коррозии составляют 10…12% всей производимой стали. Наиболее интенсивная коррозия наблюдается в зданиях и сооружениях химических производств, что объясняется действием различных газов, жидкостей и мелкодисперсных частиц непосредственно на строительные конструкции, оборудование и сооружения, а также проникновением этих агентов в грунты и действием их на фундаменты. Основной задачей, стоящей перед противокоррозионной техникой, является повышение надежности защищаемого оборудования, строительных конструкций и сооружений. Это должно осуществляться за счет широкого применения высококачественных материалов, и в первую очередь эпоксидных смол, стеклопластиков, полимерных подслоечных материалов и новых герметиков.
Коррозия : процесс разрушения материалов вследствии химических или электрохимических процессов. Эрозия – механическое разрушение поверхности. По характеру самого процесса коррозию разделяют на две основные группы : химическую и электрохимическую. Химическая коррозия протекает в неэлектролитах – жидкостях, не проводящих электрического тока и в сухих газах при высокой температуре. Электрохимическая коррозия происходит в электролитах и во влажных газах и характеризуется наличием двух параллельно идущих процессов: окислительного (растворение металлов) и восстановительного (выделение металла из раствора).
По внешнему виду коррозию различают: пятнами, язвами, точками, внутрикристаллитную, подповерхностную. По характеру коррозионной среды различают следующие основные виды коррозии: газовую, атмосферную, жидкостную и почвенную.
Газовая коррозия происходит при отсутствии конденсации влаги на поверхности. На практике такой вид коррозии встречается при эксплуатации металлов при повышенных температурах.
Атмосферная коррозия относится к наиболее распространенному виду электрохимической коррозии, так как большинство металлических конструкций эксплуатируются в атмосферных условиях. Коррозия, протекающая в условиях любого влажного газа, также может быть отнесена к атмосферной коррозии.
Жидкостная коррозия в зависимости от жидкой среды бывает кислотная, щелочная, солевая, морская и речная. По условиям воздействия жидкости на поверхность металла эти виды коррозии получают добавочные характеристики: с полным и переменным погружением, капельная, струйная. Кроме того по характеру разрушения различают коррозию равномерную и неравномерную.
Бетон и железобетон находят широкое применение в качестве конструкционного материала при строительстве зданий и сооружений химических производств. Но они не обладают достаточной химической стойкостью против действия кислых сред. Свойства бетона и его стойкость в первую очередь зависит от химического состава цемента из которого он изготовлен. Наибольшее применение в конструкциях и оборудовании находят бетоны на портландцементе. Причиной пониженной химической стойкости бетона к действию минеральных и органических кислот является наличие свободной гидроокиси кальция (до 20%), трехкальциевого алюмината (3 CaO × Al2 O3 ) и других гидратированных соединений кальция.
При непосредственном воздействии кислых сред на бетон происходит нейтрализация щелочей с образованием хорошо растворимых в воде солей, а затем взаимодействие кислых растворов со свободным гидрооксидом кальция с образованием в бетоне солей, обладающих различной растворимостью в воде. Коррозия бетона происходит тем интенсивнее, чем выше концентрация водных растворов кислот. При повышенных температурах агрессивной среды коррозия бетонов ускоряется. Несколько более высокой кислотостойкостью обладает бетон, изготовленный на глиноземистом цементе, из-за пониженного содержания оксида кальция. Кислотостойкость бетонов на цементах с повышенным содержанием оксида кальция в некоторой степени зависит от плотности бетона. При большей плотности бетона кислоты оказывают на него несколько меньшее воздействие из-за трудности проникновения агрессивной среды внутрь материала.
Щелочестойкость бетонов определяется главным образом химическим составом вяжущих, на которых они изготовлены, а также щелочестойкостью мелких и крупных заполнителей.
Увеличение срока службы строительных конструкций и оборудования достигается путем правильного выбора материала с учетом его стойкости к агрессивным средам, действующим в производственных условиях. Кроме того, необходимо принимать меры профилактического характера. К таким мерам относятся герметизация производственной аппаратуры и трубопроводов, хорошая вентиляция помещения, улавливание газообразных и пылевидных продуктов, выделяющихся в процессе производства; правильная эксплуатация различных сливных устройств, исключающая возможность проникновения в почву агрессивных веществ; применение гидроизолирующих устройств и др.
Непосредственная защита металлов от коррозии осуществляется нанесением на их поверхность неметаллических и металлических покрытий либо изменением химического состава металлов в поверхностных слоях: оксидированием, азотированием, фосфатированием.
Наиболее распространенным способом защиты от коррозии строительных конструкций, сооружений и оборудования является использование неметаллических химически стойких материалов: кислотоупорной керамики, жидких резиновых смесей, листовых и пленочных полимерных материалов (винипласта, поливинилхлорида, полиэтилена, резины), лакокрасочных материалов, синтетических смол и др. Для правильного использования неметаллических химически стойких материалов необходимо знать не только их химическую стойкость, но и физико-химические свойства, обеспечивающие условия совместной работы покрытия и защищаемой поверхности. При использовании комбинированных защитных покрытий, состоящих из органического подслоя и футеровочного покрытия, важным является обеспечение на подслое температуры, не превышающей максимальной для данного вида подслоя.
Для листовых и пленочных полимерных материалов необходимо знать величину их адгезии с защищаемой поверхностью. Ряд неметаллических химически стойких материалов, широко используемых в противокоррозионной технике, содержит в своем составе агрессивные соединения, которые при непосредственном контакте с поверхностью металла или бетона могут вызвать образование побочных продуктов коррозии, что, в свою очередь, снизит величину их адгезии с защищаемой поверхностью. Эти особенности необходимо учитывать при использовании того или иного материала для создания надежного противокоррозионного покрытия.
Материлы, применямые для защиты от коррозии
Лакокрасочные покрытия вследствие экономичности, удобства и простоты нанесения, хорошей стойкости к действию промышленных агрессивных газов нашли широкое применение для защиты металлических и железобетонных конструкций от коррозии. Защитные свойства лакокрасочного покрытия в значительной степени обуславливаются механическими и химическими свойствами, сцеплением пленки с защищаемой поверхностью.
Перхлорвиниловые и сополимерно- лакокрасочные материалы широко используются в противокоррозионной технике.
Лакокрасочные материалы в зависимости от назначения и условий эксплуатации делятся на восемь групп: А – покрытия стойкие на открытом воздухе; АН – то же, под навесом; П – то же, в помещении; Х – химически стойкие; Т – термостойкие; М – маслостойкие; В – водостойкие; ХК – кислостойкие; ХЩ – щелочестойкие; Б – бензостойкие.
Для противокоррозионной защиты применяются химически стойкие перхлорвиниловые материалы: лак ХС-724, эмали ХС и сополимерные грунты ХС-010, ХС-068, а также покрытия на основе лака ХС-724 и каменноугольной смолы, лаки ХС-724 с эпоксидной шпаклевкой ЭП-0010. Защитные покрытия получают последовательным нанесением на поверхность грунта, эмали и лака. Число слоев зависит от условий эксплуатации покрытия, но должно быть не менее 6. Толщина одного слоя покрытия при нанесении пульверизатором 15…20 мкм. Промежуточная сушка составляет 2…3 ч при температуре 18…20 ° С. Окончательная сушка длится 5 суток для открытых поверхностей и до 15 суток в закрытых помещениях.
Окраска химически стойким комплексом (грунт ХС-059, эмаль 759, лак ХС-724) предназначена для защиты от коррозии наружных металлических поверхностей оборудования, подвергающихся воздействию агрессивных сред щелочного и кислотного характера. Этот комплекс отличается повышенной адгезией за счет добавки эпоксидной смолы. Химически стойкое покрытие на основе композиции из эпоксидной шпаклевки и лака ХС-724 совмещает в себе высокие адгезионные свойства, характерные для эпоксидных материалов и хорошую химическую стойкость, свойственную перхлорвинилам. Для нанесения композиций из эпоксидной шпаклевки и лака ХС-724 рекомендуется готовить следующие два состава:
Состав грунтовочного слоя, 4 по массе
Эпоксидная шпаклевка ЭП-0010 100
Отвердитель №1 8,5
Растворитель Р-4 35…45
Состав переходного слоя, 4 по массе
Эпоксидная шпаклевка ЭП-0010 15
Лак ХС-724 100
Отвердитель №1 1,3
--> ЧИТАТЬ ПОЛНОСТЬЮ <--