Реферат: Химия. Белки

Гликопротеиды содержат остатки углеводов. Они входят в сос­тав хрящей, рогов, слюны.

Хромопротеиды содержат молекулу окрашенного вещества, обычно типа порфина. Самым важным хромопротеидом является гемоглобин — переносчик кислорода, окраши­вающий красные кровяные тельца.

Нуклеопротеиды протеины, связанные с нуклеиновыми кис­лотами. Они представляют собой очень важные с биологической точ­ки зрения белки—составные части клеточных ядер. Нуклеопротеиды являются важнейшей составной частью виру­сов — возбудителей многих болезней.

Определение строения белков

Определение строения белков является очень сложной задачей, но за последние годы в химии белка достигнуты значительные успехи. Помимо методов получения высокомоле­кулярных синтетических полипептидов, построенных из большого чис­ла молекул одинаковых а-аминокислот, разработаны методы синтеза смешанных полипептидов с заранее заданным порядком чередования различных а-аминокислот путем постепенного их наращивания.

Полностью определена химическая структура нескольких белков: гормона инсулина, антибиотика грамицидин, фермента, расщепляющего нуклеи­новые кислоты, рибонуклеазы, гормона аденокортикотропина, белка вируса табачной мозаики, миоглобина, гемоглобина и др. Частично определена структура некото­рых других белков.

Изучение химического строения белка начинают с определения аминокислотного состава. Для этого используется главным образом метод гидролиза, т. е. нагревание белка с 6—10 моль/л соляной кислотой при температуре 100—110°С. Получают смесь а-аминокислот, из которой можно выделить индивидуальные аминокислоты.

Например, полный гидролиз одного трипептида приводит к образованию трех аминокислот:

Для количественного анализа этой смеси в настоя­щее время применяют ионообменную и бумажную хроматографию. Сконструированы специальные автоматические анализаторы ами­нокислот.

Итак, гидролиз белков, по существу, сводится к гидролизу полипептидных связей. К этому же сводится и процесс переваривание.

Разработаны также ферментативные методы ступенчатого рас­щепления белка. Некоторые ферменты расщепляют макромолекулу белка специфически — только в местах нахождения определенной аминокислоты. Так получают продукты ступенчатого расщепления — пептоны и пептиды, последующим анализом которых устанавлива­ют их аминокислотный состав.

Значительно более сложным является определение последова­тельности амидокислот в пептидных цепях белка. С этой целью пре­жде всего определяют N- и С-концы полипептидных цепей, при этом решаются два вопроса—идентифицируются концевые аминокислоты и определяется число пептидных цепей, входящих в состав макромо­лекул белка. Для определения N-концов пептидной цепи получают N-производное концевой аминокислоты пептида, которое идентифицируют после полного гидролиза пептида. С-концы пептидных цепей определяются избирательным отщеп­лением концевой аминокислоты с помощью специфического фермен­та — карбоксипептидазы и последующей идентификацией этой амино­кислоты. Если макромолекула белка состоит из двух (или более) пеп­тидных цепей, как в случае инсулина, то избирательно разрушают дисульфидные мостики окислением (например, над-муравьиной кислотой) и затем полученные полипептиды разделяют путем фракционирования на ионитах. Для определения последова­тельности расположения аминокислот в каждой полипептидной цепи ее подвергают частичному кислотному гидролизу и избиратель­ному расщеплению с помощью ферментов, каждый из которых раз­рывает полипептидную цепь только в определенных местах присоеди­нения какой-то одной определенной аминокислоты или одного типа аминокислот (основных, ароматических). Таким образом получают несколько наборов пептидов: которые разделяют, используя методы хроматографии и электрофореза. Строение коротких пептидов определяют последовательным от­щеплением и идентификацией концевых аминокислот упомянутыми выше методами, а большие пептиды подвергают дополнительному расщеплению с последующим разделением и определением строе­ния. Затем путем сложного сопоставления структуры различных уча­стков пептидной цепи воссоздают полную картину расположения аминокислот в макромолекуле белка. Работа эта очень трудоемкая, и для определения химической структуры белка требуется несколь­ко лет.

Для изучения пространственной структуры белка, последовательности соединения аминокислот в том или ином белке используют различные физико-химические методы, из которых наиболее эффек­тивными оказались метод ступенчатого расщепления и рентгеноструктурный анализ.

Рентгеноструктурный анализ - метод исследования атомной структуры в-ва с помощью дифракции рентгеновских лучей. Рентгеновские лучи взаимодействуют с электронными оболочками атомов. В результате этого взаимодейст­вия происходит дифракция рентгеновских лучей и на фотопленке получается дифракционная картина — пятна или окружности. Из дифракционной картины при помощи сложных расчетов устанавливают распределение электронной плотности в-ва, а по ней - род атомов и их расположение.

В настоящее время установлено, что большинство белков состоят из 22 качественно разных а-аминокислот.

При образовании молекулы белка или полипептида а-аминокислоты могут соединяться в различной последовательности. Возмож­но огромное число различных комбинаций. Так же как, пользуясь 20...30 буквами алфавита, можно написать текст любой длины, так и из 20 а-аминокислот можно образовать больше 1018 комбинаций. Существование различного типа полипептидов практически неогра­ничено.

Определение наличия белка:

Для идентификации белков и полипептидов используют специ­фические реакции на белки. Например:

а) биуретовая реакция

б) ксантопротеиновая реакция (появление желтого окрашивания при взаимодействии с онцентрированной азотной кислотой, кото­рое в присутствии аммиака становится оранжевым; реакция свя­зана с нитрованием остатков фенилаланина и тирозина);

в) реакция Миллона (образование желто-коричневого окраши­вания при взаимодействии с Hg(NÎ3 )2 +HNО3 +HNO2

г) нингидриновая реакция

д) при нагревании белков со щелочью в присутствии солей свин­ца выпадает черный осадок PbS, что свидетельствует о присутствии серусодержащих аминокислот.

е) сильное нагревание вызывает не только денатурацию белков, но и разложение их с выделением летучих продуктов, обладающих запахом жженых перьев.

Белки обычно образуют коллоидные растворы. Многие реаген­ты вызывают осаждение белков — коагуляцию, которая может быть обратимой и необратимой. Например, этанол и ацетон коагу­лируют белки, но эта коагуляция является обратимой. В чистой воде коагулированные этим способом белки снова образуют кол­лоидный раствор. Обратимую коагуляцию вызывают также раст­воры некоторых солей (MgSO4 (NH4)2 SO4 Na2 SO4 ). Необратимую коагуляцию (денатурацию) белка вызывает кипячение, а также дей­ствие минеральных кислот, пикриновой кислоты, солей тяжелых металлов, танина.

Синтез пептидов

Синтез пептидов связан с рядом существенных трудностей. Преж­де всего, необходимы оптические активные изомеры а-аминокислот. Кроме того, требуются специальные приемы для осуществления последователь­ного образования пептидных связей в нужной нам последователь­ности а-аминокислот: защита аминогрупп, активация карбоксиль­ных групп, отщепление защитных групп, множество специальных реагентов.

Но грандиозная работа по анализу и синтезу белков в последний период революционизировалась благодаря использованию высокоэффективных автоматических приборов. К ним от­носят синтезаторы — установки для синтеза, круглосуточно работающие без человека по заданной программе. Это одно из проявлений компьюте­ризации в химии. Создание таких автоматов стало возможным после появления новых плодотворных химических идей. Синтезаторы появились после предложе­ния американским химиком P. Meрифилдом нового принципа — син­теза на полимерном носителе, обла­дающем определенными функцио­нальными группами.

Такой способ исключает необходимость выделения промежуточных продуктов на каждой стадии синтеза и легко подвергается автоматизации.

К-во Просмотров: 364
Бесплатно скачать Реферат: Химия. Белки