Реферат: Химия на рубеже веков свершения и прогнозы

1. ХИМИЯ НА РУБЕЖЕ ВЕКОВ — СВЕРШЕНИЕ И ПРОГНОЗЫ

Химия как фундаментальная наука окончательно сформировалась лишь в начале ХХ века, когда три главных постулата квантовой механики
— уравнение Шредингера, как квантовый наследник уравнения классической механики (уравнение Гамильтона-Якоби);
— принцип Паули, организующий электроны по спиновым состояниям и энергетическим уровням;
— волновая функция – носитель информации о плотности распределения заряда и спина составили надежный и прочный фундамент физический химии. Именно они наполнили физическим содержанием периодическую систему элементов Д.И. Менделеева – величайшее открытие прошлого века, значение которого вышло далеко за рамки химии. С позиции этих трех постулатов химическую реакцию следует рассматривать как физический процесс перестройки электронных оболочек и перегруппировки ядер.

Понимание и осознание значимости этих трех принципов делает химическую науку ясной и предсказуемой в главном: из них рождается все ее богатство, многообразие, стройная, изящная логика и красота.

Двадцатое столетие сделало химию точной наукой: установлено множество количественных закономерностей, точных законов, достигнут высочайший метрологический уровень определения атомно-молекулярных, термодинамических и кинетических констант, характеризующих вещество и химический процесс.

За этот век химия превратилась в разветвленную науку. Сегодня многие ее области существуют как самостоятельные: аналитическая химия, неорганическая химия, физическая химия, органическая химия, радиохимия, биохимия, геохимия, электрохимия и т.д. Каждая из них имеет собственный предмет и собственную область исследования, свои проблемы, свои экспериментальные методы. Но к 80-м годам 20-го столетия на смену профессиональным «дроблениям» химии пришло осознание необходимости совместного решения общих фундаментальных проблем химической науки.

Определение таких интерграционных проблем представляется чрезвычайно важным делом – это позволяет четко сформулировать основные направления поиска, сделать его сосредоточенным, осмысленным и, следовательно, более конкретным, результативным, экономичным.

Первая попытка определить эти главные, «интеграционные» направления в химии, была предпринята Легасовым В.А., Бучаченко А.Л..

Этими авторами дана классификация химии на новом уровне. Это структурирование химии не по названиям разных «химий», число которых уже далеко превзошло четыре десятка; а структурирование химии по задачам и целям, по ее внутренней логике, которая не разделяет химию на «химиче4 ские губернии», а организует ее как единую науку, объединяет химиков в единое сообщество.

Сегодня, в начале ХХI века, иерархия общих проблем химии может быть представлена в следующем виде:
— искусство химического синтеза;
— химическая структура и функция;
— управление химическими процессами;
— химическое материаловедение;
— химическая технология;
— химическая энергетика;
— химическая аналитика и диагностика;
— химия жизни.

Это главные стратегические направления современной химии, по которым она развивается. Они отражают ее движение и ее прогресс. Содержания этих направлений можно сформулировать следующим образом: · Химический синтез – ключевое направление химии, источник всех ее сокровищ. Это направление делает ее самой созидательной наукой. Химия поставляет материалы для всех отраслей науки и производства, и в этом смысле можно сказать, что она стоит в центре естественных наук. Особую важность вносит то обстоятельство, что наряду с научными принципами химического синтеза здесь остается простор для игры ума и интуиции. Это сближает химический синтез с искусством.

· Атомно-молекулярная структура (архитектура) и электронное строение вновь синтезированных соединений бесконечно разнообразны. Настолько же разнообразны и физические, и химические свойства, и, следовательно, их функции. Установление связи между структурой вещества и его функциональным поведением составляет предмет второго направления.

· Управление химическими процессами, их молекулярными механизмами, использование химических факторов (комплексообразования, сольватации, молекулярной организации, катализа) и физических воздействий (от света до механики) для регулирования химических процессов – таково содержание третьего направления.

· Вещество – это не материал, а лишь его предшественник. Надо научить вещество работать как материал, определить его характеристики и границы применимости – это задача химического материаловедения.

· Задача химической технологии – разработка технологического процесса, его оптимизация и масштабирование, обеспечение малых энергозатрат, высокой безопасности и экологической чистоты.

· Разработка высокоэффективных способов преобразования химической энергии в другие виды энергии, накапливание энергии в энергоемких веществах и материалах (включая лазеры с химической и солнечной накачкой), преобразование солнечной энергии, химические источники тока, со5 пряжение энергопроизводящих и энергозатратных процессов – все это составляет предмет химической энергетики.

· Прогресс химического материаловедения и химической технологии невозможен без надежной химической аналитики и диагностики. Это бурно развивающееся направление (включающее химическую сенсорику и химию запаха) с огромными техническими «выходами» во все области – от систем техногенного контроля до медицины и экологии.

Нет нужды доказывать, что все эти направления связаны не только логикой. Их внутренне объединяет сама методология химического исследования: в хорошей научной работе можно найти элементы нескольких направлений. И это великолепное сочетание дифференциации и интеграции результативный и созидательный стиль современной химии.

· Наконец, химия живого – это гигантская химическая галактика, которую еще предстоит осваивать.

На нее работают биохимия и химия природных веществ, фитохимия, наука о ферментах, медицинская и фармацевтическая химия, генная инженерия, биотехнология и многие другие. Это направление с ярко выраженными ожиданиями, гигантским потенциалом, бесспорными перспективами и огромным будущим; его контуры и масштабы уже сегодня просматриваются в трансгенной технологии.

2 ХИМИЧЕСКАЯ СТРУКТУРА И ФУНКЦИЯ

К настоящему времени известно около 8 миллионов химических соединений, и их число продолжает бурно расти. Атомно-молекулярная архитектура и электронная структура этих соединений (выделенных из природного сырья или синтезированных) бесконечно разнообразны, настолько разнообразны их физические и химические свойства и, следовательно, их функции.

Известно, что для отбора одного вещества с заданными свойствами и назначением (т.е. с заданной функцией) необходимо в среднем испытать от 3 до 10 000 соединений. Настолько низок коэффициент полезного действия грандиозного труда, который сопровождает процесс превращения созданного вещества в вещество используемое, поставленное на службу человечества и цивилизации. Связь между электронной структурой вещества или материала его функциональным поведением – проблема фундаментальной важности.

Решение ее открыло бы умение предсказывать свойства, функцию и назначение вещества по его электронной структуре. В действительности, еще более важной является обратная задача: решить, каким должно быть вещество, какой должна быть его молекулярная архитектура и электронная структура, чтобы обеспечить заданный комплекс свойств и заданное функционирование.

В решении этих двух задач современная химия имеет определенные, хотя и скромные, успехи, достигнутые на основе богатого экспериментального и практического опыта. Можно довольно надежно предсказывать как зависит способность мономеров к полимеризации от их строения, прогнозировать основные типы химических реакций и реакционную способность различных функциональных химических групп, предсказывать изменение электрофизических свойств полупроводников при определенном изменении их структуры и т. д.

Ярким примером успешного поиска связи между структурой и функцией является синтез органических и металлорганических веществ – молекулярных металлов. Так, соединения Hg3-AsF6, синтезированные в 1971 году, обладают высокой проводимостью, характерной для металлов, а при низкой температуре – становятся сверхпроводниками. Химический анализ дает для этого вещества состав – Hg3AsF6, однако, из-за геометрической несоизмеримости составляющих атомов в кристаллической решетке создаются вакансии групп AsF6 , так что состав элементарной ячейки соответствует Hg3-.AsF6, где .=0,18. Молекулярная структура этого вещества необычна: она состоит из двух компонент – каркаса из анионных октаэдров AsF6 3— и катионных цепей атомов ртути, которые укладываются в каналах анионного каркаса вдоль главных осей а и в кристалла.

Такая структура обеспечивает особые электропроводящие функции вещества. Цепи атомов ртути ведут себя как одномерный упорядоченный металл, обладающий высокой проводимостью. Это обстоятельство обеспечивает высокую электропроводность кристаллов вдоль этих цепей (т.е. вдоль 7 осей а и b) и низкую проводимость в перпендикулярном направлении (вдоль оси с). При понижении температуры включается взаимодействие между проводящими цепями – сначала между параллельными, а затем между перпендикулярными. Такое взаимодействие приводит к появлению сверхпроводимости при температуре ниже 4,1 К.

Установление связей в цепи структура-свойство-функция является научной основой химического материаловедения и имеет первостепенное значение при создании новых веществ и материалов: полимеров, люминофоров, материалов для полупроводниковой и лазерной техники, химических реагентов, катализаторов и т.д. Исключительное значение оно приобретает в биохимии и медицине, где структура лекарств, гормонов и других физиологически активных веществ определяет их функциональные эффекты в живом организме. Это огромная область, включающая такие крупные разделы как химия памяти и химия мышления, область малоизвестная, с огромными практическими и интеллектуальными перспективами.

Решать прямую задачу, т.е. устанавливать связь структура-функция, можно на двух уровнях: 1) на эмпирическом, который ограничивается простым установлением соответствия между структурой и функцией; 2) на неэмпирическом, когда подразумевается исследование и распознавание атомно-молекулярного механизма, с помощью которого данная структура выполняет свою функцию.

Однако современная химия уже в состоянии ставить и решать обратную задачу – создать структуру под заданную функцию.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 158
Бесплатно скачать Реферат: Химия на рубеже веков свершения и прогнозы