Реферат: Химик Анри Этьен Сент-Клер Девилль

Идея была логичной, и ученый приступил к ее осуществлению. Стеклянную трубку заполняли кристаллами нитрата серебра, к одному из ее концов присоединяли сушильную трубку для осушки хлора, а другой, изогнутый конец погружали в охлаждающую смесь, чтобы собрать продукт реакции. Уже первые порции хлора превратили прозрачные кристаллы нитрата серебра в белое порошкообразное вещество, а в изогнутом конце трубки стала накапливаться бесцветная жидкость. С любопытством Девилль наблюдал за ходом процесса: что же представляет собой эта жидкость?

В лаборатории стоял сильный запах хлора. Ученый распахнул настежь окна и вернулся к прибору. Вместо жидкости, образовавшейся вначале в трубке, погруженной в охлажденную смесь, было полно бесцветных кристаллов. «Думаю, что это ангидрид азотной кислоты. Да, оказывается, он твердый. Надо сделать анализ», – решил Девилль.

Он взял часть кристаллов и бросил их в воду. Кристаллы моментально растворились, а температура раствора значительно повысилась. Анализ показал, что раствор содержит только азотную кислоту. Прозрачные кристаллы очень легко поглощали влагу из воздуха и быстро превращались в жидкость. Трубка снова заполнилась густой маслянистой жидкостью. Девилль повторил эксперимент несколько раз, многократно повторил и анализ самих кристаллов. Сомнения не было – их состав отвечал ангидриду азотной кислоты.

Статья, которую он послал в Париж, вызвала большой интерес. Результаты Девилля полностью опровергали взгляды Жерара, чему очень обрадовался Дюма, давно ведший острую полемику с Жераром. Дюма немедленно собрал ученый совет Сорбонны. В зале присутствовали все выдающиеся учетные Франции. С докладом об ангидриде азотной кислоты выступил Сент-Клер Девилль. На столе перед ним лежало несколько запаянных стеклянных ампул, заполненных кристаллами ангидрида. Аудитория наградила его долгими овациями...

Исключительная тщательность исследований снискали Девиллю симпатии парижских ученых, и по предложению Дюма в 1851 году он занял место профессора Балара в Высшей педагогической школе Парижа. Лаборатории здесь были просторными, но в них недоставало аппаратуры, отсутствовала и научная библиотека. Это не смутило Девилля, хотя суммы в 1800 франков в год явно не хватало для покрытия расходов по оборудованию лаборатории. Все же Девилль не приостановил исследовательскую работу.

Теперь он снова имел возможность встречаться в Париже с Шарлем. Братья обменивались мыслями, советовались по многим проблемам.

Исследования процессов минералообразования требовали проведения опытов при высоких температурах, и Анри решил помочь брату. Вот почему, прежде всего в лаборатории Высшей педагогической школы занялись конструированием и усовершенствованием высокотемпературных печей. Для достижения высокой температуры Девилль добавлял в воздух для горения некоторое количество кислорода. Этот прием дал отличные результаты: в печи легко достигалась очень высокая температура. Даже плавление такого тугоплавкого вещества, как фарфор, не представляло затруднений. Особенно высокую температуру получали, когда в качестве топлива использовали светильный газ, смешанный с кислородом. Пламя этой смеси ослепительно светилось, и даже платина, один из самых тугоплавких металлов, легко плавилась в нем.

Обычные тигли, в которых до сих пор проводили подобные плавки, не выдерживали таких высоких температур: они размягчались и разрушались. Пришлось искать новый, более огнеупорный материал. Девилль нашел выход и из этого положения. Он решил изготовлять тигли из чистой окиси кальция или магния. Температура плавления этих веществ очень высока: при нагревании до 2000°С и даже до 3000°С они лишь раскаляются и начинают светиться, но не обнаруживают никаких признаков размягчения. Минералогические исследования Шарля получили новые возможности, но работа при вы­соких температурах породила новые идеи и у самого Анри Девилля. Наряду с усовершенствованием печей он стал работать над осуществлением некоторых идей, возникших ещё во время аналитических исследований в Безансоне. Теперь внимание исследователя привлекло большое сходство свойств алюминия и трехвалентного железа.

«Если их свойства так близки, должны существовать и соединения двухвалентного алюминия, ведь соединения двухвалентного железа известны и хорошо изучены», – думал ученый.

Мысль о получении соединений двухвалентного алюминия не давала ему покоя. Он подробно изучил литературу по этому вопросу и познакомился с методом Вёлера: последнему удалось получить серый порошок, а потом и мелкие зернышки этого нового недостаточно изученного металла.

Может быть, при подходящих условиях восстановления именно метод Вёлера дает возможность получить соединения двухвалентного алюминия?

Металлический калий был уже сравнительно дешев, и проведение реакции не представляло таких трудностей, как это было во времена Вёлера. Девилль имел возможность осуществить реакцию в сравнительно большом масштабе. Для этой цели он использовал широкую платиновую трубку, которую загрузил металлическим калием. Один конец трубки он соединил с фарфоровым сосудом, в котором хлорид алюминия нагревался до высокой температуры. Пары хлорида алюминия вступали в реакцию с калием, который восстанавливал их до металлического алюминия. Благодаря усовершенствованным печам выпаривание хлорида алюминия осуществлялось легко. В этом случае в пламя не приходилось вдувать кислород, так как уже при 500°С вещество начинало испаряться.

Девилль подробно исследовал продукт реакции, пытаясь найти соединения двухвалентного алюминия, но все его усилия не привели к желаемому результату. В платиновой трубке он открыл лишь два металла – образовавшийся алюминий и непрореагировавший калий. Мелкие серебристо-белые частицы алюминия обладали хорошей ковкостью и не теряли блеска на воздухе.

Девилль называл алюминиевую руду глиной. Он, однако, применял не обычную глину, а пользовался совершенно чис­той, белой породой, которую добывали в окрестностях города Бо. Сегодня такая глина называется бокситом и по-прежнему является самым важным и почти незаменимым сырьем в производстве алюминия.

Эту глину подвергали очистке, чтобы удалить примеси железа, а потом смешивали получавшуюся окись алюминия с углем и смесь нагревали в среде хлора. Образовавшийся хлорид алюминия загружали в железную трубу, заполненную керамическими сосудами, каждый из которых вмещал по пол­килограмма натрия. Когда реакция заканчивалась, железную трубу нагревали до более высокой температуры, частицы образовавшегося алюминия расплавлялись и образовывали мелкие зернышки. После охлаждения железной трубы извлекали: керамические сосуды и тщательно собирали зернышки полученного металла. Когда их набиралось достаточно много, ими: загружали керамический сосуд и вновь нагревали до высокой: температуры, чтобы расплавить эти зерна и получить большой слиток металла. Однако операции эти были очень сложными, а их применение в большом масштабе невыгодно.

В результате многолетней работы Девиллю удалось усовершенствовать процесс. Теперь он мог в течение одного дня получить довольно большой слиток алюминия. Несмотря на это, стоимость серебристого металла достигала фантастической суммы: 30000 франков за килограмм! Алюминий стоил намного дороже золота.

Успех Девилля вызвал настоящую сенсацию. Несколько слитков алюминия выставили в фойе Академии наук, чтобы все могли видеть этот необычный металл. Через несколько дней Сент-Клер Девилль должен был отправиться на прием к самому императору, чтобы лично доложить ему о своих изысканиях.

Император Наполеон III долго любовался блестящими слитками металла.

Император замолчал на секунду, а потом сказал, обращаясь к Дюма: « Пусть из первого же полученного алюминия изготовят медаль, на которой должно быть изображение господина Девилля. Это будет выражением нашей признательности ученому.»

Но это заслуга Фридриха Вёлера, ваше величество. Он первый получил алюминий. Я лишь усовершенствовал процесс. Нужно изготовить медаль с изображением Вёлера... – возразил императору Девилль.

Работа на заводах Жавеля шла быстрым темпом. Девилль ввел ряд усовершенствований в метод получения натрия Гей-Люссака и Тенара, так как высокая цена на алюминий определялась значительной стоимостью натрия, необходимого для восстановления. Решение такой сложной проблемы требовало длительной и напряженной работы. Лучшими помощниками в этом Девиллю были Анри Жюль Дебре и Артур Морен. Усовершенствование методов, конструирование аппаратов – все требовало многократных опытов, тщательной проверки. Самая незначительная деталь имела большое значе­ние для производства.

Вскоре стало ясно, что взаимодействие с натрием протекает спокойнее и без опасности взрыва, если вместо хлорида алюминия брать его смесь с хлоридом натрия; даже когда металлический натрий плавился вместе с солями, опасности взрыва почти не было. По этому способу реакцию можно было проводить в значительно больших масштабах, а заметное увеличение производительности сразу снижало стоимость ме­талла.

Процесс стал еще выгоднее, когда вместо смеси хлоридов натрия и алюминия стали применять фторид натрия – алюминия. Это вещество (криолит) встречается в природе, образуя кристаллы, похожие на лед. Криолит плавится при сравнительно низкой температуре, легко соединяется с натрием, а образовавшийся алюминий удобно отливать в слитки.

18 июля 1855 года на заводах Жавеля получили первый слиток алюминия, произведенный в промышленном масштабе по усовершенствованному методу. За один производственный цикл получали слитки весом до 6 – 8 кг.

Когда была готова алюминиевая медаль, Академия наук устроила специальное торжество и вручила ее Фридриху Вёлеру. Девилль сидел в первом ряду и искренне радовался. Он всегда был далек от мыслей о славе и богатстве. Несмотря на то, что его вклад в производство алюминия был исключительным, он великодушно настоял на том, чтобы на медали было выгравировано имя Вёлера и год, когда великий немецкий ученый впервые получил крохотные зерна металла, – 1827.

– Не нахожу слов, чтобы выразить благодарность французским ученым, – сказал Вёлер. – Но, по-моему, заслуга в разработке процессов получения алюминия профессора Анри Сент-Клер Девилля исключительно велика. Только благодаря его трудам мы имеем возможность производить такие большие количества металла.

Вёлер подошел к Девиллю и сердечно пожал ему руку.

В сущности начало всему положили исследования Эрстеда, –продолжал Вёлер. – Еще в 1824 году он, восстановив хлорид алюминия амальгамой калия, после отгонки ртути получил серый металлический порошок. И лишь позже, по его просьбе, я принялся за усовершенствование этого метода.

И все-таки современный метод получения алюминия
своим появлением обязан вам, – настаивал Девилль.

К-во Просмотров: 203
Бесплатно скачать Реферат: Химик Анри Этьен Сент-Клер Девилль