Реферат: Классификация взрывов по плотности вещества, по типам химических реакций
Казанский межвузовский инженерный центр
"НОВЫЕ ТЕХНОЛОГИИ"
ГОУ ВПО КГТУ
Контрольная работа.
Теория горения и взрыва
На тему:
"Классификация взрывов по плотности вещества, по типам химических реакций. "
Казань 2011 г.
Оглавление
Введение
Взрывы
Классификация взрывов по плотности вещества два основных типа
Классификация по типам химических реакций
Список используемой литературы
Введение
Горение - с детства и навсегда поражающий наше воображение феномен природы - несомненно один из важнейших для природы и человеческой практики физико-химических процессов. Греческий миф о Прометее, похитившем огонь у богов и отдавшем его людям, культ огня в других древних мифологиях - своеобразная" поэтическая дань роли огня в возникновении цивилизации.
Научное исследование горения началось в XVIIIв, имеете со стремительный распитием химии. Па первоначальном этапе горение определялось как соединение с кислородом горючих веществ (п первую очередь содержащих водород и углерод). Обобщая эту точку зрения, химики формулируют в то время широко известное высказывание: "Жизнь - это медленное горение"; это высказывание остается первым и поныне, поскольку именно соединение с кислородом накопленного растениями горючего служит источником энергии человека и вообще живых существ.
Выяснение химической сущности горения на этом раннем этапе развития пауки подготовило базу для развитии энергетики и термодинамики, поскольку горение - сонорной поставщик газов высокой температуры и энергии, В конце XIXв. интенсивно занимаются важные исследовании химико-термодинамических равновесий и системе Н3 -На О--СО-СО,-С-О,, определяющих в первом приближении температуру, достигаемую при горении углеводородных топлен, и состав продуктов горения газон, твердых и жидких, веществ.
Этап изучения горения и взрывов, начавшийся в конце XIXв. и продолжающийся до настоящего времени, был связан с появлением двигателей внутреннего сгорания, развитием внутренней баллистики артиллерийских орудии и взрывного дела, а в последние десятилетия - с широким внедрением в технику реактивных двигателей. Это во многом стимулировало быстрое развитие науки о горении.
На современном этапе исследований процесса горения н центре внимании стоит вопрос о скорости химического превращения. Сегодня горением и взрывом мы называем быстрое протекание реакции в веществе, которое в исходном состоянии инертно. При этом решающим оказывается выделение тепла и/или активных центров при самой реакции. В современном поминании с понятиями горении, взрыва, пламени, детонации и т, д. связывается характер протекания реакции, а не ел химическое содержание: мы говорим, например, о пламени разложения озонэ 203 - * 30й , хотя в этой реакции выделяется, а не потребляется кислород. Разумеется > полностью научить характер проникания реакции молкни, лишь зная ее элементарные акты, механизм и кинетику химического превращения. Развитие теории горения оказалось, таким образом, тесно связанным - и логически и исторически - с трудами академика Н.Н. Семенова и его школы. Основанный Н. Н, Семеновым Институт химической, физики АН СССР сохраняет ведущее положение и сегодня, когда увеличилось число и расширилась география учреждений, работающих в области горения и взрывов. Отметим имена ушедших из жизни замечательных ученых. На стыке химической кинетики и науки о горении плодотворно работали В.В. Воеводский, А.В. Загулин, А.А. Ковальский, В. Н, Кондратьев.
Рядом с советской школой химической кинетики возникла и советская школа современной науки о горении,
Развитие теории горения привело к формированию некоторых специфических, асимптотических по своей природе понятий и математических методов. Дело в том, что для теории горения типична весьма сильная зависимость скорости химической реакции от температуры. Если подходить к делу с точки зрения численного решения получающихся уравнений, это вызывает затруднения. Но это же обстоятельство обусловливает плодотворность асимптотических подходов. Само основополагающее понятие в теории горения - понятие пламени, распространяющегося с постоянной скоростью, не зависящей от условий поджигания и определяемой только свойствами и состоянием горючей смеси, - представляет собой продукт асимптотического подхода.
Сильная зависимость скорости химической реакции от температуры обусловливает также специфическое для теории горения резкое различие режимов протекания реакции: существование воспламенения, разнообразных критических условий смены режимов, для которых характерна сильная, в пределе скачкообразная зависимость режима от параметров задачи.
Именно эти асимптотические понятия и подходы имеют значение, далеко выходящее за пределы теории горения. Свидетельством этому являются, например, проблемы механики полимеров, разрушения материалов, распространения импульсов по нервным тканям; в этих и во многих других проблемах с большим эффектом использовались методы теории горения.
Интересные постановки задач возникают при диффузионном горении, когда реагирующие вещества первоначально пространственно разделены. В этом случае можно считать в первом приближении, что скорость химической реакции бесконечна, однако для количества сгорающего вещества и для количества тепла, выделяющегося в единицу времени, получаются конечные выражения. При уменьшении скорости реакции толщина зоны растет, но лишь до определенного предела, за которым следует срыв, погасание пламени - один из типичных примеров критических условий в теории горения.
В качестве примера парадоксальной ситуации, с которой часто приходится сталкиваться в теории горения, упомянем вопрос о гидродинамической неустойчивости плоского фронта пламени. Прямой анализ показывает, что тонкий плоский фронт пламени абсолютно неустойчив к пространственным искривлениям, какой бы длины волны они небыли. Этот выдающийся результат принадлежит замечательному советскому физику-теоретику Л.Д. Ландау (независимо и практически одновременно он получен также французским ученым Дарье (С. Вагпеив)). И тем интереснее было выяснение физико-химических и гидродинамических факторов, обеспечивающих устойчивость пламени, которая наблюдается в экспериментах.
Теория горения, как часть математической физики, включает и использует достижения многих родственных наук - теории тепло - и массообмена, газодинамики реагирующих потоков, химической кинетики, турбулентного движения газа и др. Отбирая материал для книги, предлагаемой вниманию читателя, авторы стремились включить в нее вопросы, наиболее полно характеризующие специфику теории горения как с позиции новых любопытных физико-химических и гидродинамических эффектов, так в с точки зрения разработанных в теории новых математических методов, которые могут быть полезны читателю при решении разнообразных задач, даже весьма далеких от теории горения. Именно на эти методы мы хотели обратить внимание читателя, и название книги подчеркивает эту ее особенность: к "теории горения" добавлено определение "математическая". Подчеркнем еще раз, что основной математический факт теории горения заключен в следующем: исходные дифференциальные уравнения молекулярных и макроскопических процессов и химической кинетики имеют непрерывные решения, непрерывным образом зависящие от параметров, начальных и граничных условий. Но при выделении асимптотик возникает скачкообразность решений, их критичность к малому изменению параметров, т.е. характер решения резко изменяется.
Взрывы
Взрывы чаще всего происходят на пожаро- и взрывоопасных объектах, где могут возникнуть условия для образования газо-паровоздушных смесей, пылевоздушных смесей, где в больших количествах применяются углеводородные газы (метан, этан, пропан). Возможны взрывы котлов в котельных, газовой аппаратуры, продукции и полуфабрикатов химических заводов, паров бензина и других компонентов, муки на мельницах, пыли на элеваторах, сахарной пудры на сахарных заводах, древесной пыли на деревообрабатывающих предприятиях.
Могут быть взрывы в жилых помещениях, когда люди забывают выключить газ. Взрывы происходят на газопроводах при плохом контроле за их состоянием и несоблюдении требований техники безопасности при их эксплуатации. К тяжелым последствиям приводят взрывы рудничного газа в шахтах.
Классификация взрывов по плотности вещества два основных типа
Существуют два основных типа взрыва:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--