Реферат: Коагулирование примесей воды
Содержание
Интенсификация процесса конвективной коагуляции примесей воды
Контактная коагуляция
Определение оптимальных доз реагентов
Электрохимическое коагулирование
Литература
Интенсификация процесса конвективной коагуляции (в объеме) примесей воды
Рассмотрение задачи интенсификации процесса конвективной коагуляции примесей воды необходимо начать с анализа основных факторов, которые существенно на него влияют.
С увеличением дозы коагулянта до оптимальной скорость хлопьеобразования и декантации гидроксидов алюминия и железа (III) возрастает. Способствует этому процессу также повышение температуры и перемешивание воды. В зимнее время при низких температурах очистка воды сульфатом алюминия протекает неудовлетворительно: процессы хлопьеобразования и седиментации замедляются, хлопья образуются очень мелкие, в очищенной воде появляется остаточный алюминий (вода опалесцирует), что объясняется увеличением вязкости воды (вязкость воды при 1°С примерно в 2 раза выше, чем при 30°). Во столько же раз, по Стоксу, замедляется и скорость декантации взвешенных в ней частиц, так как эти величины обратно пропорциональны друг другу. Коагулирование примесей воды в образующейся при гидролизе коагулянта коллоидной системе — самый медленный процесс, тормозящий осаждение гидроксида алюминия при низких температурах. Это объясняется тем, что при низких температурах снижаются подвижность коллоидных частиц и частота их соударений, обусловливающих агломерацию. Снижение температуры воды от 30 до 1°С увеличивает период коагуляции примерно в 1,5 раза вследствие уменьшения кинетической подвижности примесей воды и повышения ее вязкости. Однако, подобное снижение подвижности частиц и числа их соударений полностью не объясняет наблюдаемое торможение процесса коагуляции золя гидроксида алюминия при низких температурах. По Е. Д. Бабенкову, подвижность примесей воды и продуктов гидролиза коагулянта при низких температурах больше всего снижается в результате увеличения степени их гидратации, способствующей росту размеров частиц. С возрастанием степени гидратации частиц число их соударений уменьшается, что приводит к стабилизации коагуляции, и система становится более устойчивой. Подтверждением этого является увеличение объема осадка гидроксида алюминия при низких температурах обрабатываемой воды.
Подвижность примесей воды в процессе коагуляции увеличивается при ее перемешивании. Так, при 20°С процесс коагуляции ускоряется примерно вдвое в результате перемешивания, так как при этом одновременно происходит перекинетическаяи ортокинетическая коагуляция*. Оптимальный эффект достигается уже при 5-минутном перемешивании. Значительное улучшение хлопьеобразования наблюдается при перемешивании воды (скорость 0,2...0,4 м/с) с низкой температурой. Возрастание линейной скорости перемешивания на 0.15...0,30 м/с ускоряет процесс хлопьеобразования примерно вдвое, однако, при дальнейшем ее повышении получается отрицательный эффект, что связано с разрушением сформировавшихся хлопьев. При этом существенное значение имеет температура воды. Так, процесс хлопьеобразования, происходящий при 20ºС, не наблюдается при 2 °С даже при длительном перемешивании. Только в воде с оптимальным рН и щелочностью при длительном перемешивании (около 30 мин) может быть достигнут прежний эффект хлопьеобразования. Ускорения коагулирования примесей воды при низких температурах можно достичь удлинением времени перемешивания. Движущийся поток воды влияет на хлопьеобразование лишь при условии успешного завершения перекинетической коагуляции. Только после этого перекинетическая коагуляция переходит в ортокинетическую. Если быстрое и полное хлопьеобразование не может быть полностью восстановлено при низких температурах перемешиванием, то это свидетельствует о том, что частицы гидроксида не могут вследствие перечисленных причин достичь размеров, при которых начинается ортокинетическая коагуляция.
Коагулирование примесей воды с предварительным растворением сернокислого алюминия в небольшом ее объеме позволяет значительно интенсифицировать процесс. Необходимое для обработки всей воды количество сернокислого алюминия растворяется в небольшом ее объеме с доведением рН до 4,5 ...4,7, когда при гидролизе сернокислого алюминия вместо его гидроксида образуются основные сульфаты, обладающие более высокой сорбционной способностью. Это позволяет сократить продолжительность отстаивания воды и соответственно увеличить пропускную способность отстойников.
Предварительная обработка воды окислителями также повышает эффективность коагуляции. Это объясняется тем, что окислители разрушают гидрофильные органические соединения, стабилизирующие дисперсные примеси воды, и облегчают условия протекания коагуляции. Особенно эффективно применение окислителей при обработке маломутных цветных вод. При этом возрастает гидравлическая крупность хлопьев коагулированной взвеси и интенсифицируется осветление воды.
Уменьшение времени хлопьеобразования при низкой температуре воды и снижение дозы коагулянта может быть достигнуто введением замутнителей. При замутнении воды большую роль играет степень дисперсности вводимых частиц. Существенно (на 30 ...60%) ускоряется процесс хлопьеобразования. при добавлении частиц размером меньше 3 мкм. Рекомендуется вводить в воду высокодисперсную глинистую взвесь в количестве 10 мг/л или скоагулированный осадок в количестве- 0,4 ... 0,6 от дозы коагулянта. При низких температурах и малой мутности воды резко ухудшаются технологические процессы ее очистки, поэтому использование промывных вод скорых фильтров и осадков отстойников и осветлителей для замутнения обрабатываемой воды особенно важно. Рекомендуется сначала вводить промывную воду в количестве 5...25% исходной воды, затем коагулянт. Использование промывной воды и технологических осадков в качестве добавки к исходной воде позволяет улучшить качество очищенной воды, снизить на 25 ...30% расход коагулянта и уменьшить время пребывания обрабатываемой воды в отстойниках, флотаторах и осветлителях.
Эффективное воздействие осадка объясняется тем, что он представляет собой уже готовые крупные частицы такого жё- строения, что и выделяющийся гидроксид. Поэтому время, необходимое для образования сверхмицеллярных агрегатов, сокращается. Таким образом, ускоряется хлопьеобразование, образуются более крупные хлопья, быстрее идет их декантация а следовательно, интенсивнее осветляется вода. Для достижения высокого эффекта осветления рециркулируемый осадок следует вводить в воду за 15... 30 с до введения коагулянта. Осадок рекомендуется применять при рН исходной воды не ниже 7,0. Возраст осадка не должен превышать двух суток с отбором его из шламоотводяших труб горизонтальных отстойников.
Коагуляция примесей воды может быть значительно ускорена ее обработкой смесью коагулянтов. Действие коагулянтов, при этом обоюдно усиливается. Такое явление наблюдается при использовании смеси A12(S04)3 и FeCl3 в соотношении 1:1, 1:2, 2:1 или этих же коагулянтов с силикатом натрия. Подобное улучшение коагуляции достигается обработкой воды смесью неочищенного и очищенного глинозема в соотношении 3:1 или смесью коагулянтов глинозема и хлорного железа в соотношениях 3:1 и 4:1. В ряде случаев вместо сернокислого алюминия для обработки воды используют оксихлорид алюминия. Опыт применения этого коагулянта показал хорошие результаты на ряде водоочистных комплексов.
Улучшения коагуляции можно достичь также обработкой воды сульфатом алюминия или хлорным железом с предварительным выделением их гидроксидов. Сущность этого метода заключается в том, что оптимальная доза сернокислого алюминия и известкового молока вводится в промежуточный реактор, куда подается 1 % обрабатываемой воды. В реакторе образуются первичные хлопья гидроксидов основных солей алюминия, которые обладают высокой сорбционной способностью и хорошо агломерируются в крупные агрегаты. Затем из реактора эта суспензия подается в поток обрабатываемой воды.
Ускорение процесса хлопьеобразования достигается применением метода концентрационного коагулирования, при котором расчетное количество коагулянта вводится лишь в часть обрабатываемой воды. После смешения с раствором коагулянта поток обрабатываемой воды объединяют (обычно в начале камеры хлопьеобразования) с потоком остальной некоагулированной воды. Описанный метод обладает рядом преимуществ: распределение всего коагулянта в части обрабатываемой воды создает условия для ускоренного хлопьеобразования; после смешения с некоагулированной водой хлопья, образованные в условиях повышенной концентрации коагулянта, хорошо сорбируют водные примеси. Однако, этот метод не всегда дает положительные результаты, что объясняется изменением свойств обрабатываемой воды и ее примесей.
К физическим методам интенсификации процесса коагуляции относятся аэрирование, наложение электрического и магнитного полей, воздействие ультразвуком, ионизирующее излучение. Введение сжатого диспергированного воздуха в обрабатываемую воду в смеситель после добавления коагулянта с некоторым разрывом во времени позволяет удалить из зоны коагуляции образующийся при распаде угольной/кислоты диоксид углерода. Своевременное удаление свободной углекислоты из сферы формирования микрохлопьев значительно ускоряет дальнейший ход коагуляции. Аэрирование в количестве 10... ...30% от расхода обрабатываемой воды позволяет снизить расход коагулянта на 25 ... 30% и улучшить качество обработки воды.
Благодаря наложению электрического поля ускоряются процессы хлопьеобразования и' осаждения коагулированной взвеси, повышается степень очистки воды от органических и неорганических примесей фильтрованием; улучшается отделение водорослей. Действие магнитного поля способствует уменьшению структурно-механической гидратации и g-потенциала частиц. Сорбционная емкость гидроксидов коагулянтов по отношению к гуминовым веществам возрастает на 30... 40%- При обработке вод, содержащих минеральные взвеси, магнитная обработка позволяет увеличить плотность и гидравлическую крупность хлопьев скоагулированной взвеси, повысить производительность водоочистных сооружений I ступени и снизить мутность осветленной воды. Магнитная обработка цветной и железосодержащей воды увеличивает плотность скоагулированной взвеси и снижает в 2 ... 8 раз остаточные концентрации примесей. В целях интенсификации коагуляции рекомендуется омагничивать воду за 10 ... 60 с до ввода коагулянта, скорость движения воды в рабочем зазоре магнитного аппарата поддерживать 1 м/с, количество знакопеременных магнитных контуров в генераторе должно составлять 4 ... 6, длительность омагничивания — 0,6... 1,0 с. Возможно омагничивание лишь части (например, половины) обрабатываемой воды с последующим смешением ее (до ввода коагулянта) с .остальной водой. Улучшить ход коагуляции можно также магнитной обработкой раствора коагулянта. При этом эффект активации раствора зависит от напряженности магнитного поля. Расход электроэнергии при омагничивании 1 м3/ч воды составляет 5... 8 Вт-ч.
Процесс очистки воды коагулированием можно улучшить наложением электрического поля. По этому методу исходную воду с введенными в нее небольшими дозами коагулянта пропускают между алюминиевыми электродами, подключенными к источнику тока. При этом сохраняется преимущество метода электролитического коагулирования, а расход электроэнергии не превышает 10 Вт/м3 воды.
Коагуляцию примесей воды улучшает обработка ее ультразвуком. Однако, происходящее при этом разрушение механических примесей, уменьшающее степень полидисперсности суспензии, иногда сказывается отрицательно. Результаты исследований по ультразвуковой коагуляции, проведенные В. Б. Викулиной, показывают, что оптимальные результаты достигаются при относительно низких частотах ультразвука — 8... 18 кГц при продолжительности озвучивания 1 ... 3 мин. С увеличением интенсивности ультразвука возрастает скорость коагуляции.
Воздействие ионизирующих у-, р- и рентгеновских лучей проявляется в ускорении окисления органических и минеральных примесей растворенным в воде кислородом, в результате чего вода обесцвечивается, обеззараживается, дезодорируется, ускоряется осаждение взвешенных примесей. Все перечисленные выше процессы улучшают обработку воды коагулянтами, расширяют сферу их применения.
коагуляция вода примесь
Контактная коагуляция
Контактная коагуляция — технологический процесс осветления и обесцвечивания воды, заключающийся в адсорбции ее примесей с нарушенной агрегативной устойчивостью на поверхности частиц контактной массы. В основе процесса лежат вандер-ваальсовы силы межмолекулярного притяжения. Однако, они определяются только при условии движения жидкости, когда мелкие частицы примесей воды сближаются с зернами фильтрующей загрузки, преодолев при этом электростатические силы отталкивания.
В процессе контактной коагуляции взаимодействуют частицы, значительно различающиеся своими размерами. Частицы примесей воды имеют микро- и ультрамикроскопические размеры, а частицы контактной среды — макроскопические. Прилипание агрегативно неустойчивых примесей воды к поверхности частиц контактной массы является частным случаем коагуляции, носящим название адагуляция. Характерной особенностью этого процесса является большая скорость в сочетании с высоким эффектом при меньших затратах коагулянта. Интенсивность прилипания мелких примесей к относительно крупным зернам загрузки намного превышает скорость агломерации между собой отдельных мелких частиц в свободном объеме жидкости.
При фильтровании воды, обработанной коагулянтом, через песок с размером зерен 0,5 мм ее осветление происходит за 5— 10 с. Подобная глубина осветления воды при конвективной коагуляции частиц с образованием хлопьев достигается за 20— 40 мин. Контактная коагуляция отличается не только высокой скоростью процесса, но и большой полнотой извлечения из воды ее примесей, что позволяет при обработке маломутных цветных вод ограничиваться только одним методом ее кондиционирования. При коагулировании примесей воды в объеме образующиеся хлопья требуют последующего их выделения тем или иным методом.
Практика показала, что эффект контактной коагуляции повышается по мере сокращения интервала между вводом коагулянта в обрабатываемую воду и ее поступлением в слой контактной массы. За этот короткий промежуток времени в обрабатываемой воде успевают образоваться микроагрегаты слипшихся первичных частиц. Далее коагуляция идет за счет коррозии этих микроагрегатов на макроповерхности частиц контактной массы.
Другими особенностями контактной коагуляции является независимость процесса от щелочности и температуры воды, меньшее влияние рН и др.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--