Реферат: Колебания и волны. Оптика. Квантовая и ядерная физика
представляет собой гармоническое колебание. Обозначение Re вещественной части условимся опускать и (8) будем записывать в виде
В теории колебаний принимается, что колеблющаяся величина s равна вещественной части комплексного выражения, стоящего в этом равенстве справа.
Рисунок 2.
Механические гармонические колебания
Пусть материальная точка совершает прямолинейные гармонические колебания вдоль оси координат х около положения равновесия, принятого за начало координат. Тогда зависимость координаты х от времени t задается уравнением, аналогичным уравнению (1), где s=x:
(1.1)
Согласно выражениям (4) в (5), скорость v и ускорение а колеблющейся точки соответственно равны
(1.2)
Сила F=ma, действующая на колеблющуюся материальную точку массой т, с учетом (1.1) и (1.2) равна
Следовательно, сила пропорциональна смещению материальной точки из положения равновесия и направлена в противоположную сторону (к положению равновесия).
Кинетическая энергия материальной точки, совершающей прямолинейные гармонические колебания, равна
(1.3)
или
(1.4)
Потенциальная энергия материальной точки, совершающей гармонические колебания под действием упругой силы F, равна
(1.5)
или
(1.6)
Сложив (1.3) и (1.5), получим формулу для полной энергии:
(1.7)
Полная энергия остается постоянной, так как при гармонических колебаниях справедлив закон сохранения механической энергии, поскольку упругая сила консервативна.
Из формул (1.4) и (1.6) следует, что Т и П изменяются с частотой 2w0 , т.е. с частотой, которая в два раза превышает частоту гармонического колебания. На рис. 3 представлены графики зависимости x, T и П от времени. Так как ásin2 añ = ácos2 añ = 1/2, то из формул (1.3), (1.5) и (l.7) следует, что áTñ = áПñ = ½ E.
Рисунок 3
Гармонический осциллятор.
Гармоническим осциллятором называется система, совершающая колебания, описываемые уравнением вида (6);
(2.1)
Колебания гармонического осциллятора являются важным примером периодического движения, и служат точной или приближенной моделью во многих задачах классической и квантовой физики. Примерами гармонического осциллятора являются пружинный, физический и математический маятники, колебательный контур. Рассмотрим два из этих примера.
Пружинный маятник — это груз массой , подвешенный на абсолютно- упругой пружине и совершающий гармонические колебания под действием упругой силы F = –kx, где k — жесткость пружины (рис. 4). Уравнение движения маятника
или
Из выражений (2.1) и (1) следует, что пружинный маятник совершает гармонические колебания по закону с циклической частотой
(2.2)
и периодом
(2.3)
Формула (2.3) справедлива для упругих колебаний в пределах, в которых выполняется закон Гука, т. е. когда масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, согласно (1.5) и (2.2), равна
Рисунок 4.
Физический маятник — это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси, проходящей через точку О, не совпадающую с центром масс С тела.
Если маятник отклонен из положения равновесия на некоторый угол a, то в соответствии с уравнением динамики вращательного движения твердого тела момент M возвращающей силы можно записать в виде
(2.4)
где J — момент инерции маятника относительно оси, проходящей через точку подвеса О, l – расстояние между ней и центром масс маятника, Ft = –mg sina » –mga. — возвращающая сила (знак минус обусловлен тем, что направления Ft и a всегда противоположны; sina »a соответствует малым колебаниям маятника, т.е. малым отклонениям маятника из положения равновесия). Уравнение (2.4) можно записать в виде
или
Принимая
(2.5)
получим уравнение
идентичное с (2.1), решение которого (1) известно:
(2.6)
Из выражения (2.6) следует, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой w0 (см. (2.5)) и периодом
, (2.7)
где L=J/(ml) — приведенная длина физического маятника.
Точка О' на продолжении прямой ОС, отстоящая от точки О подвеса маятника на расстоянии приведенной длины L, называется центром качаний физического маятника (рис. 5). Применяя теорему Штейнера, получим
,
т. е. ОО' всегда больше ОС. Точка подвеса О маятника и центр качаний О' обладают свойством взаимозаменяемости: если точку подвеса перенести в центр качаний, то прежняя точка О подвеса станет новым центром качаний, и период колебаний физического маятника не изменится.
Рисунок 5.