Реферат: Коллоидная химия
Содержание
I. Раздел «Молекулярно – кинетические свойства коллоидных систем»
II. Раздел «Оптические свойства коллоидных систем»
III. Раздел «Структурно – механические свойства дисперсных систем»
IV. Раздел «Растворы ВМС»
V. Раздел «Представители гетерогенно – дисперсных систем»
Литература
I . Раздел «Молекулярно – кинетические свойства коллоидных систем»
1. Молекулярно – кинетические свойства коллоидов. Броуновское движение
Молекулярно-кинетические свойства коллоидных систем и растворов ВМС, как и газов, и молекулярных или ионных растворов, обнаруживаются в таких явлениях, как броуновское движение, диффузия, осмотическое давление. Частицы ультрамикрогетерогенных систем (золей, аэрозолей) участвуют в тепловом движении и подчиняются всем молекулярно-кинетическим законам. Благодаря этому можно экспериментально определить размер, массу и концентрацию частиц дисперсной фазы.
Броуновское движение (название дано в честь английского ботаника Броуна, обнаружившего с помощью микроскопа непрерывное движение мелких частичек цветочной пыльцы, взвешенных в воде) проявляется в хаотическом и непрерывном движении частиц дисперсной фазы под действием ударов молекул растворителя (дисперсионной среды), находящихся в состоянии интенсивного теплового движения. В зависимости от размера частиц их движение может быть различным.
Частицы коллоидной степени дисперсности, испытывая с разных сторон многочисленные удары молекул жидкости, могут перемещаться поступательно в самых разнообразных направлениях. Если частица имеет сравнительно большой размер, то число ударов велико, и по соответствующему закону статистики результирующий импульс становится равным нулю, такая частица не может двигаться под действием теплового движения молекул.
Кроме того, частицы с большой массой обладают инерционностью и малочувствительны к ударам молекул. Очень малые частицы имеют значительно меньшие массу и поверхность. На такую частицу будет приходиться существенно меньшее число ударов, поэтому вероятность неравномерного распределения импульсов, получаемых с разных сторон, увеличивается. Это происходит как вследствие неодинакового числа ударов с разных сторон частицы, так и вследствие различной энергии молекул, сталкивающих с частицей. В зависимости от размеров частица приобретает колебательное, вращательное и поступательное движение.
Таким образом, броуновское движение является следствием теплового движения в дисперсионной среде и прямым отражением статистики.
Броуновское движение – следствие случайных микроотклонений (флуктуаций), эффект которых возрастает с уменьшением размеров системы, и наглядное проявление отклонений от второго закона термодинамики в микросистемах, т.е. подтверждение его статистического характера.
2.Осмотическое давление. Уравнение Вант-Гоффа
Осмотическое давление в растворе или золе описывается следующим строгим термодинамическим соотношением:
(1)
где - разность между химическими потенциалами растворителя при установлении равновесия относительно полунепроницаемой мембраны; - средний парциальный мольный объем растворителя; - активность растворителя в растворе.
В уравнении (1) можно активность заменить мольными долями
(2)
где - мольная доля растворителя и дисперсной фазы соответственно; - рациональный осмотический коэффициент.
Если золь разбавлен, то разложив в ряд логарифм, ограничившись первым членом ряда и использовав равенство, получим уравнение Вант-Гоффа:
(3)
где - массовая концентрация; - молекулярная масса частицы.
Осмотическое давление дисперсной системы определяется только численной концентрацией и зависит от природы и размера частиц. Малое осмотическое давление коллоидной системы объясняется благодаря большой массе коллоидных частиц при одной и той жен весовой концентрации численная концентрация коллоидной системы всегда значительно меньше, чем у истинного раствора.
Вторая особенность осмотического давления лиозолей – его непостоянство – объясняется явлением агрегации, характерным для коллоидных систем.
Малое значение и непостоянство осмотического давления лиозолей являются причиной того, что осмометрия, а также криоскопия и эбуллиоскопия не применяются для определения численной концентрации или размера коллоидных систем.
3. Диффузия. Ее практическое значение. Уравнение Эйнштейна. Связь между средним сдвигом и коэффициентом диффузии. Уравнение Фика
--> ЧИТАТЬ ПОЛНОСТЬЮ <--