Реферат: Комбинаторные задачи
var k:integer; s:longint;
begin
s :=0;
for k :=1 to n do
if (( j shr ( k -1)) and 1)=1 {данное условие означает, что в
k -й справа позиции числа j , в 2-й системе, стоит 1}
then s:=s+a[k];
if s=m then
begin
for k:=1 to n do
if ((j shr (k-1))and 1)=1 then write(a[k]:4);
writeln
end
end;
procedure subsets (n:integer) ;
var q , j : longint ;
begin
q :=1 shl n ; {таким образом мы помещаем в q число 2^ n }
for j :=1 to q -1 do {цикл по всем подмножествам}
if check(j) then exit
end;
Заметим, что если все элементы в массиве положительные, то, изменив порядок рассмотрения подмножеств, решение приведенной выше задачи можно сделать более эффективным. Так, если сумма элементов какого-либо подмножества уже больше, чем M , то рассматривать подмножества, включающие его в себя уже не имеет смысла. Пересчет же сумм можно оптимизировать, если каждое следующее сгенерированное подмножество будет отличаться от предыдущего не более, чем на один элемент (такой способ перечисления подмножеств показан в [2]). Приведенная же программа черезвычайно проста, но обладает одним недостатком: мы не можем ни в каком случае с ее помощью перебирать все подмножества множеств, состоящих из более, чем 30 элементов, что обусловлено максимальным числом битов, отводимых на представление целых чисел в Турбо Паскале (32 бита). Но, как уже было сказано выше, на самом деле, перебор всех подмножеств у множеств большей размерности вряд ли возможен за время, отведенное для решения той или иной задачи.
Генерация всех перестановок n -элементного множества
Количество различных перестановок множества, состоящего из n элементов равно n !. В этом нетрудно убедиться: на первом месте в перестановке может стоять любой из n элементов множества, после того, как мы на первом месте зафиксировали какой-либо элемент, на втором месте может стоять любой из n – 1 оставшегося элемента и т.д. Таким образом, общее количество вариантов равно n (n – 1)(n – 2)...3×2×1 = n !. То есть рассматривать абсолютно все перестановки мы можем только у множест, состоящих из не более, чем 10 элементов.
Рассмотрим рекурсивный алгоритм, реализующий генерацию всех перестановок в лексикографическом порядке. Такой порядок зачастую наимболее удобен при решении олимпиадных задач, так как упрощает применение метода ветвей и границ, который будет описан ниже. Обозначим массив индексов элементов — p. Первоначально он заполнен числами 1, 2, ..., n , которые в дальнейшем будут меняться местами. Параметром i рекурсивной процедуры Perm служит место в массиве p, начиная с которого должны быть, получены все перестановки правой части этого массива. Идея рекурсии, в данном случае следующая: на i -ом месте должны побывать все элементы массива p с i -го по n -й и для каждого из этих элементов должны быть получены все перестановки остальных элементов, начиная с (i +1)-го места, в лексикографическом порядке. После получения последней из перестановок, начиная с (i +1)-го места, исходный порядок элементов должен быть восстановлен.
{описание переменных совпадает с приведенным выше}
procedure Permutations(n:integer);
procedure Perm(i:integer);
var j,k:integer;
begin