Реферат: Компьютеризированный сбор данных. Датчики и их классификация

Магнитострикция

(магнетизм ® деформация)

Деформация ферромагнитного тела, помещенного в магнит­ное поле.

Пьезоэлектрический эффект

(давление ® элек­тричество)

Возникновение разности потенциалов на гранях сегнетоэлектрика, находящегося под давлением.

Эффект Доплера

(звук, свет ® частота)

Изменение частоты при взаимном перемещении объектов по сравнению с частотой, когда эти объекты неподвижны.

4.3.2. Способы измерения (прямые и косвенные)

По способу измерения различают датчики:

- прямого

- косвенного

преобразования.

Для датчиков технической системы в связи с обра­боткой их сигналов на микро-ЭВМ обязательно требует­ся преобразование сигналов в электрические. Однако среди датчиков далеко не все построены на основе пря­мого преобразования того или иного явления в электри­ческие сигналы. Во многих датчиках необходимы еще до­полнительные преобразования. Датчики подобного типа называются косвенными в отличие от прямых, или не­посредственных, где электрические сигналы формируют­ся без промежуточных преобразований (рис. 4.2). Возь­мем, например, оптический датчик. Это фотоэлектриче­ский элемент на основе CdS. В зависимости от освещен­ности изменяется электрическое сопротивление между выводами элемента (рис. 4.3). Другим примером датчика прямого типа служит терморезистор, сопротивление кото­рого изменяется в зависимости от температуры.

Рис. 4.2. Принцип работы датчиков с прямым (а) и косвенным (б) преобразователем

В датчиках косвенно­го типа явление, обуслов­ленное непосредственным взаимодействием с внеш­ней средой, преобразует­ся в другое явление (или ряд других), а послед­нее — в электрический сиг­нал. Приме­ром такого типа может быть датчик массы на ос­нове измерения деформа­ции. В нем осуществляет­ся следующая цепочка преобразований: масса ® механическое смещение ® изменение электрического сопротивления, в резуль­тате которых получается электрический сигнал. Еще одним примером датчика косвенного типа может служить датчик обледенения, выполненный на основе оптического элемента. Здесь осаждение инея вызывает изменение освещенности, которое, в свою очередь, преоб­разуется в выходной электрический сигнал.

По принципу действия датчики укрупненно делятся на физические и химические. Первые построены на осно­ве физических, вторые—на основе химических явлений. Но, строго говоря, имеются датчики, которые нельзя четко отнести к тому или иному типу. Практически по­давляющее большинство современных датчиков работает на основе физических принципов. Для химических дат­чиков характерно наличие многих проблем, связанных преимущественно с надежностью, приспособленностью к массовому производству и стоимостью. В настоящее время многие из этих трудностей постепенно преодоле­ваются, и в будущем химические датчики найдут широ­кое применение, особенно как датчики запаха, вкуса или датчики медицинской электроники, вводимые в тело.

4.3.3. Основные виды датчиков

При классификации датчиков в качестве основы часто используется принцип их действия, который, в свою оче­редь, может базироваться на физических или химических явлениях и свойствах:

Рис. 4.4. Виды датчиков

Ниже рассмотрим основные типы датчиков:

а) температурные

С температурой мы сталки­ваемся ежедневно, и это наиболее знакомая нам физи­ческая величина. Среди прочих датчиков температурные отличаются особенно большим разнообразием типов и являются одним из самых распространенных (табл. 4.2).

Стеклянный термометр со столбиком ртути известен с давних времен и широко используется в наши дни. Тер­морезисторы, сопротивление которых изменяется под влиянием температуры, используются довольно часто в самых разнообразных устройствах благодаря сравни­тельно малой стоимости датчиков этого типа. Существу­ет три вида терморезисторов: с отрицательной характе­ристикой (их сопротивление уменьшается с повышением температуры), с положительной характеристикой (с по­вышением температуры сопротивление увеличивается) и с критичной характеристикой (сопротивление резко из­меняется при пороговом значении температуры). На рис.4.5 показана зависи­мость сопротивления от температуры для каждого вида терморе­зистора. Обычно со­противление под влия­нием температуры из­меняется довольно рез­ко. Для расширения линейного участка это­го изменения парал­лельно и последова­тельно терморезистору присоединяются посто­янные резисторы.

Термопары особен­но широко применяют­ся в области измере­ний. В них использу­ется эффект Зеебека: в спае из разнородных металлов возникает ЭДС, приблизительно пропорциональная разности тем­ператур между самим спаем и его выводами. Диапазон измеряемых термопарой температур зависит от приме­няемых металлов. В термочувствительных ферритах и конденсаторах используется влияние температуры соот­ветственно на магнитную и диэлектрическую проницае­мость, начиная с некоторого значения, которое называ­ется температурой Кюри и для конкретного датчика зависит от применяемых в нем материалов. Термочувстви­тельные диоды и тиристоры относятся к полупроводни­ковым датчикам, в которых используется температурная зависимость проводимости р— п-перехода (обычно на кристалле кремния). В последнее время практическое применение нашли так называемые интегральные тем­пературные датчики, представляющие собой термочув­ствительный диод на одном кристалле с периферийными схемами, например усилителем и др.

Таблица 4.2.

Принцип действия Тип датчика (примеры) Диапазон измеряемых тзмпаратур, °С
-273 0 500 1000 1500
Тепловое расширение Термометр на основе измерения давления герметизированных
Ртутный термометр
Биметаллический датчик
Изменение электрического сопротивления Термометр сопротивления платиновый
Терморезистор с отрицательной характеристикой
Терморезистор с положительной характеристикой
Терморезистор с критичной характеристикой
Генерация Термо-ЭДС Термопара хромель-алюмель
Полупроводниковый (НдСаТе) элемент
Изменение магнитной проницаемости Термочувствительным феррит
Изменение электрической емкости Термочувствительный конденсатор
Явления в полупроводниках Диод,транзистор
Тиристор
Интегральная схема
Тепловое излучение Инфракрасный детектор пироэлектрического типа
Изменение частоты Кварцевый резонатор
Изменение цвета Термочувствительная краска
Тепловые шумы Платиновый провод
Деформация, разрушение Плавкий предохранитель

б) оптические

Подобно температурным опти­ческие датчики отличаются большим разнообразием и массовостью применения. Как видно из табл. 4.3, по прин­ципу оптико-электрического преобразования эти датчи­ки можно разделить на четыре типа: на основе эффектов фотоэлектронной эмиссии, фотопроводимости, фотогаль­ванического и пироэлектрических.

Фотоэлектронная эмиссия, или внешний фотоэф­фект,— это испускание электронов при падении света на физическое тело. Для вылета электронов из физического тела им необходимо преодолеть энергетический барьер. Поскольку энергия фотоэлектронов пропорциональна hc/ K (где ft—постоянная Планка, с— скорость света, ʗ длина волны света), то, чем короче длина волны об­лучающего света, тем больше энергия электронов и легче преодоление, ими указанного барьера.

Эффект фотопроводимости, или внутренний фотоэф­фект,— это изменение электрического сопротивления фи­зического тела при облучении его светом (см. рис. 4.4). Среди материалов, обладающих эффектом фотопрово­димости,—ZnS, CdS, GaAs, Ge, PbS и др. Максимум спектральной чувствительности CdS приходится при­близительно на свет с длиной волны 500—550 нм, что соответствует приблизительно середине зоны чувстви­тельности человеческого зрения. Оптические датчики, работающие на эффекте фотопроводимости, рекоменду­ется использовать в экспонометрах фото- и кинокамер, в автоматических выключателях и регуляторах света, обнаружителях пламени и др. Недостаток этих датчи­ков—замедленная реакция (50 мс и более).

Фотогальванический эффект заключается в возник­новении ЭДС на выводах р— п-перехода в облучаемом светом полупроводнике. Под воздействием света внутри р— п-перехода появляются свободные электроны и дыр­ки и генерируется ЭДС. Типичные датчики, работающие по этому принципу,— фотодиоды, фототранзисторы. Та­кой же принцип действия имеет оптико-электрическая часть двухмерных твердотельных датчиков изображения, например датчиков на приборах с зарядовой связью (ПЗС-датчиков). В качестве материала подложки для фотогальванических датчиков чаще всего используется кремний. Сравнительно высокая скорость отклика и большая чувствительность в диапазоне от ближней ин­фракрасной (ИК) зоны до видимого света обеспечивает этим датчикам широкую сферу применения. Рис. 6 по­могает лучше понять принцип действия фотогальваниче­ских элементов.

Пироэлектрические эффекты— это явления, при ко­торых на поверхности физического тела вследствие изменений поверхностного температурного «рельефа» воз­никают электрические заряды, соответствующие этим изменениям. Среди материалов, обладающих подобны­ми свойствами: LiTaOa, РЬТЮз, ВаТЮз и множество других так называемых пироэлектрических материалов. В корпус датчика встроен полевой транзистор, позволяющий преобразовать высокое полное сопротивление пироэлектрического элемента с его мизерными электрическими зарядами в более низкое и оптимальное выходное сопротивление датчика. Из дат­чиков этого типа наиболее часто используются ИК-датчики.

Таблица 4.3.

Вид Принцип оптико-элект­рического преобразова­ния Основное назначение Исполнение Рабочая область спектра Тип Достоинства и особенности
Фотоприем­ные Фотоэлектронная эмиссия - - - Фотоэле­мент электро­вакуумный Высокая чувствительность, высокая скорость отклика, воз­можность счета фотоимпуль­сов
Фотоэлектронный умно­житель хорошее отношение сигнал-шум, большой выходной сиг­нал, возможность счета фото­импульсов, быстрый отклик
Фотопрово­димость Фоторезис­тор малые габариты, малая стои­мость, максимальная чувстви­тельность CdS на волне 520 нм
Фотогаль­ванический эффект Фотообна­ружение Одиночный элемент Ультра-фиолетовая Фотодиод, чувствитель­ный к УФ-лучам Малые габариты, твердо­тельная конструкция, не тре­буется источника электричес­кого питания
Видимая Фотодиод, чувствитель­ный к видимой области спект­ра Не требуется источника элек­трического питания
То же со встроенной схемой усили­теля Широкий динамический диа­пазон, значительный выход­ной сигнал, в фотокамере ис­пользуется логарифмичность характеристики
Ближняя инфракрас­ная Фотодиод, чувствитель­ный к ближ­ней инфра­красной об­ласти спектра Малые габариты, низкая стоимость, твердотельная кон­струкция, простота согласова­ния с транзисторами, не тре­буется источника электричес­кого питания
То же, мало­инерционный Малые габариты и быстрота отклика, особенно у PIN-дио-дов
Фототран­зистор Мощный выходной сигнал, малая стоимость, хорошее со­гласование с транзисторами

Среди оптических датчиков мало найдется таких, которые обладали бы достаточной чувствительностью в. всем световом диапазоне. Большинство датчиков имеет оптимальную чувствительность в довольно узкой зоне ультрафиолетовой, или видимой, или инфракрасной ча­сти спектра.

Основные преимущества перед датчиками других типов:

1. Возможность бесконтактного обнаружения.

К-во Просмотров: 435
Бесплатно скачать Реферат: Компьютеризированный сбор данных. Датчики и их классификация