Реферат: Комп’ютерні мережі
Кожен комп’ютер, підключений до мережі, має ім’я (адресу). Комп’ютерні мережі можуть обмінюватися між собою інформацією у вигляді повідомлень. Природа цих повідомлень може бути різна (лист, програма, книга і т.д.). У загальному випадку повідомлення по шляху до абонента-одержувача проходить декілька вузлів комутації. Кожний з них, аналізуючи адресу одержувача в повідомленні і володіючи інформацією про конфігурацією мережі, вибирає канал зв’язку для наступного пересилання повідомлення. Таким чином, повідомлення “подорожує” по мережі, поки не досягає абонента-одержувача.
Для підключення до мережі комп’ютери повинні мати:
апаратні засоби, що з’єднують комп’ютери із середовищем передачі даних;
мережеве програмне забезпечення, за допомогою якого здіснюється доступ до послуг мережі.
У світі існують тисячі різноманітних комп’ютерних мереж. Найбільш істотними ознаками, що визначають тип мережі, є ступінь територіального розсередження, топологія і застосовані методи комутації.
1.3 Класифікація комп’ютерних мереж
В залежності від принципу побудови мережі розрізняють локальні та глобальні мережі. Локальні мережі призначені для використання в межах одного приміщення чи однієї організації. Глобальні ж мережі створюються для з'єднання комп'ютерів, що розташовані на значних відстанях один від одного. Локальні мережі поділяються на однорангові та багаторангові. В однорангових мережах всі користувачі мають однакові права. Користувачі такої мережі можуть здійснювати обмін даних між собою, використовувати спільні ресурси (принтери, диски і т.д.) Прикладом такої мережі може служити мережа на базі операційної системи Wіndows`95.
Багаторангова мережа відрізняється від однорангової тим, що в ній використовується один або декілька (у випадку використання великої кількості робочих місць) більш потужних комп'ютерів, які називаються сервером. Всі інші комп'ютери такої мережі називаються робочими станціями. Сервер призначений для керування роботою мережі, збереження загальної інформації. Перевагою мереж такого типу є можливість здійснювати керування правами користувачів такої мережі.
Однак локальні мережі не можуть повністю задовольнити всі потреби в обміні інформацією між комп'ютерами. Локальні мережі різних установ можна з'єднувати між собою за допомогою каналів зв'язку (телефонного, радіорелейного, супутникового та ін.), тим самим, утворюючи розподілені обчислювальні системи і мережі різного призначення. Головне призначення глобальних мереж – використання різноманітних інформаційних ресурсів користувачами з різних організацій, міст, країн. Глобальні мережі поділяються на регіональні та міжнародні. Регіональні мережі призначені для використання користувачами певного регіону. В Україні існує декілька мереж регіонального призначення – УкрПак, мережа податкової адміністрації, залізниці, УМВС та інш. Глобальні мережі мають користувачів у всьому світі.
Існує декілька загальновідомих всесвітніх мереж. Це такі мережі як: FіdoNet, ІnterNet, EuroNet, система міжбанківських розрахунків SWFІT. Широке розповсюдження отримала в країнах колишнього Радянського Союзу мережа RelCom.
Однак найвідомішою з них є всесвітня мережа ІnterNet - найбільша глобальна комп'ютерна мережа, що зв'язує десятки мільйонів абонентів у більш як 170 країнах світу.
2. Мережева архітектура
2.1 Семирівнева модель комп’ютерних мереж
Розбиття на рівні, або рівнева архітектура, є формою функціональної модульної, яка є центральною при проектуванні сучасних цифрових систем передачі даних. Поняття функціональної модульної (але, можливо, не сам термін) таке ж старе, як і техніка. Надалі слово модуль використовується для позначення як пристрою, так і процесу в деякій обчислювальній системі. Важливо, що модуль виконує деяку виділену функцію. Розробники модуля повинні глибоко розуміти внутрішні деталі і роботу цього модуля. Проте той, хто використовує цей модуль як компонент при побудові складнішої системи, вважатиме його «чорним ящиком», тобто користувача цікавлять входи, виходи і особливо функціональний зв'язок виходів з входами, а не внутрішня робота модуля. Таким чином, чорний ящик — це модуль, який описується характеристикою вхід-вихід. Він може використовуватися разом з іншими чорними ящиками для побудови складнішого модуля, який знову розглядатиметься на вищих рівнях як великий чорний ящик.
Цей підхід до проектування, природно, приводить до ієрархії вкладених модулів. Складна система повинна бути побудована як взаємозв'язана безліч модулів високого рівня і, можливо, деяких додаткових простих модулів, необхідних для реалізації взаємозв'язків і виконання додаткових простих функцій. З погляду найвищого рівня - рівня всієї системи — кожний з цих модулів вважається чорним ящиком, але на наступному нижчому рівні кожен модуль високого рівня розглядається як взаємозв'язана безліч модулів наступного нижчого рівня, знову, можливо, доповнене простими модулями. (Простим модулем називається такий модуль, який не розбивається на модулі нижчого рівня.) Кожен модуль наступного нижчого рівня знову розбивається на модулі ще нижчого рівня і так далі до найнижчого рівня ієрархічного ланцюга.
Як приклад ієрархічного підходу можна представити обчислювальну систему як безліч процесорних модулів, безліч модулів пам'яті і шинний модуль. Процесорний модуль можна в свою чергу представити як сукупність пристрою управління, арифметичного пристрою, пристрою вибірки команд і пристрою введення-висновку. Аналогічно арифметичний пристрій може бути розбите на суматори, що накопичують регістри і т.д.
В більшості випадків користувачу чорного ящика немає необхідності знати детальний відгук виходу на вхідну дію. Наприклад, неважливо, коли точно зміниться вихідний сигнал у відповідь на зміну вхідного сигналу, до того як він буде використаний. Таким чином, модулі (тобто чорні ящики) можуть бути описані за допомогою допустимих відхилень, а не точних значень. Це приводить до стандартизованих модулів, і далі в свою чергу до можливості використовування багатьох ідентичних, раніше створених (тобто готових) модулів в тій же самій системі. До того ж такі стандартизовані модулі можна легко замінити на нові функціонально еквівалентні модулі, які дешевше і більш надійні.
Всі ці переваги функціональної модульної (тобто простота проектування, легкість розуміння і стандартні, взаємозамінні, широко поширені модулі) дали підстави для введення рівневої архітектури мереж передачі даних. Рівневу архітектуру можна розглядати як ієрархію вкладених модулів або чорних ящиків, як описано вище. На кожному заданому рівні ієрархії наступний нижчий рівень розглядається як один або декілька чорних ящиків з деяким певним функціональним описом, який використовується на цьому заданому вищому рівні.
Незвичайним в рівневій архітектурі мереж передачі даних є те, що лінії зв'язку представляються чорними ящиками на найнижчому рівні ієрархії. Внаслідок цього чорні ящики на кожному вищому рівні є насправді розподіленими чорними ящиками. Таким чином, чорний ящик кожного вищого рівня складається з безлічі простих модулів (звично поодинці на кожен комутаційний вузол або зовнішній пункт, що входить в систему) плюс один або декілька чорних ящиків нижчого рівня. Прості модулі з чорного ящика на заданому рівні називаються паритетними процесами або паритетними модулями.
У простому випадку чорний ящик складається з двох паритетних процесів, поодинці на кожний з двох вузлів, і чорного ящика, який знаходиться на нижчому рівні і представляє систему зв'язку, що сполучає ці два паритетні процеси. Кожен процес передає повідомлення паритетному процесу в іншому вузлі по нижньому рівню, тобто через чорний ящик, що представляє систему зв'язку. Чорний ящик цього нижнього рівня може складатися з двох паритетних процесів нижчого рівня, що належать різним вузлам і сполучених системою зв'язку — чорним ящиком ще нижчого рівня. Як приклад можна вказати ситуацію, коли два керівники держав не володіють спільною мовою. Кожен керівник може передавати повідомлення паритетному керівнику через свій транслятор (перекладач), який передає на мові, відомій паритетному транслятору, а той вже доставляє повідомлення на мові паритетного керівника держави.
Зазначимо, що у процесу передачі інформації між двома паритетними модулями рівня n, що належать різним вузлам, є два абсолютно різних аспекти. Перший з них — це протокол (або розподілений алгоритм), за допомогою якого паритетні модулі обмінюються повідомленнями для того, щоб забезпечити необхідне обслуговування для наступного більш верхнього рівня. Другий — це опис точного інтерфейсу між модулем рівня n деякого вузла і модулем рівня n — 1 того ж вузла; через цей інтерфейс відбувається фактичний обмін вказаними повідомленнями між рівнем n і чорним ящиком — системою зв'язку нижчого рівня. Перший з відмічених аспектів є важливішим (і цікавішим) для концептуального розуміння роботи рівневої архітектури, а другий має істотне значення при проектуванні і стандартизації системи. У попередньому прикладі спілкування керівників держав перший аспект пов'язаний з переговорами між керівниками держав, тоді як другий зв'язаний про тим, що кожен керівник держави повинен бути упевнений у тому, що транслятор дійсно може переводити повідомлення вірно.
2.2 Протоколи комп’ютерних мереж
Basic Reference Model (базова еталонна модель) - модель мережевої архітектури, становляча методичну основу сучасних інформаційних систем. Розроблена в 1977–1984 рр. і закріплена стандартом Міжнародної організації стандартів (International Standards Organization – ISO). Визначає принципи взаємодії відкритих систем (Open Systems Interconnection – OSI). Цю модель скорочено називають також моделлю ISO/OSI. Будується у вигляді багаторівневої ієрархічної структури, що включає в загальному випадку сім рівнів взаємодії з чітко визначеним для кожного з них функціональним призначенням. Ці сім рівнів такі (у порядку розташування від до верху низу): рівень 1 - фізичний (див. Physical layer); рівень 2 - канальний (див. Data link layer); рівень 3 -мережевий (див. Network layer); рівень 4 - транспортний (див. Transport layer); рівень 5 - сеансовий, або рівень сесій (див. Session layer); рівень 6 - рівень представлення (див. Presentation layer); рівень 7 - прикладний (див. Application layer). Кожен рівень в цій ієрархії взаємодіє з сусідніми, причому нижчі рівні є помічниками верхніх, приймаючи на себе виконання можливо більшого числа допоміжних функцій. Модель ISO/OSI лежить в основі побудови більшості сучасних мереж, зокрема ISDN і Internet.
Physical layer (фізичний рівень) – перший (нижній) рівень семирівневої ієрархічної структури організації області взаємодії відкритих систем моделі OSI (див. Basic Reference Model). Є повністю апаратно-орієнтованим, тобто забезпечує безпосередній взаємозв'язок з середовищем передачі. Призначений для реалізації таких функцій, як встановлення і управління фізичним каналом, реалізовуючи механічні, електричні, функціональні і процедурні аспекти взаємодії з фізичними засобами передачі даних. На фізичному рівні може виконуватися кодування і модуляція сигналу, що передається по каналу. Виконує передачу біт по комунікаційному каналу, забезпечуючи відмінність значень 1 і 0 як таких. Приймає і передає потік біт безвідносно його структури або значення.
Data Link Layer (канальний рівень) - другий рівень багаторівневої ієрархічної структури організації взаємодії відкритих систем моделі ISO/OSI (див. Basic Reference Model). Основними функціями канального рівня є формування кадрів, адресної інформації і управління потоком даних в окремих фізичних каналах. Другий рівень містить два підрівні: верхній - управління логічним каналом (Logical Link Control - LLC), який здійснює перевірку і забезпечення правильності передачі інформації по з'єднанню, і нижній - управління доступом до середовища передачі (Medium Access Control - MAC). На канальний рівень покладаються наступні функції: ініціалізація (обмін службовими пакетами між взаємодіючими станціями, підтверджуючими готовність до передачі даних); ідентифікація (обмін між взаємодіючими станціями службовою інформацією, підтверджуючою правильність з'єднання); синхронізація і сегментація; забезпечення прозорості з'єднання для розташованого вище рівня; управління потоком (забезпечення однакової швидкості передачі і прийому); контроль помилок і запит у разі потреби повторної передачі; обробка збійних ситуацій; завершення роботи каналу (розрив логічного з'єднання); управління каналом (контроль за станом каналу).
Network Layer (мережевий рівень) - третій рівень семирівневої ієрархічної структури взаємодії відкритих систем моделі OSI (див. Basic Reference Model). Мережевий рівень розташований над канальним рівнем (data link layer) і відповідає за доставку інформації адресату. Дані, що пересилаються від відправника до одержувача, можуть досягати адресата по різних каналах (технологія комутації каналів), розділятися на частини (пакети), кожна з яких поступає адресату по різних маршрутах (технологія комутації пакетів). Основні функції мережевого рівня полягають в управлінні адресацією і маршрутизацією даних в мережі. Наприклад, організація передачі пакетів, адресованих різним мережам, по одному фізичному з'єднанню (мультиплексування) і управління потоком (прийом від вищого рівня і передача іншим вузлам).