Реферат: Компьютерные сети 8
Прозрачность (transparency) сети достигается в том случае, когда сеть представляется пользователям не как множество отдельных компьютеров, связанных между собой сложной системой кабелей, а как единая традиционная вычислительная машина с системой разделения времени. Известный лозунг компании Sun Microsystems: "Сеть - это компьютер" - говорит именно о такой прозрачной сети.
Прозрачность может быть достигнута на двух различных уровнях - на уровне пользователя и на уровне программиста. На уровне пользователя прозрачность означает, что для работы с удаленными ресурсами он использует те же команды и привычные ему процедуры, что и для работы с локальными ресурсами. На программном уровне прозрачность заключается в том, что приложению для доступа к удаленным ресурсам требуются те же вызовы, что и для доступа к локальным ресурсам. Прозрачность на уровне пользователя достигается проще, так как все особенности процедур, связанные с распределенным характером системы, маскируются от пользователя программистом, который создает приложение. Прозрачность на уровне приложения требует сокрытия всех деталей распределенности средствами сетевой операционной системы.
Сеть должна скрывать все особенности операционных систем и различия в типах компьютеров. Пользователь компьютера Macintosh должен иметь возможность обращаться к ресурсам, поддерживаемым UNIX-системой, а пользователь UNIX должен иметь возможность разделять информацию с пользователями Windows 95. Подавляющее число пользователей ничего не хочет знать о внутренних форматах файлов или о синтаксисе команд UNIX.
Пользователь терминала IBM 3270 должен иметь возможность обмениваться сообщениями с пользователями сети персональных компьютеров без необходимости вникать в секреты трудно запоминаемых адресов.
Концепция прозрачности может быть применена к различным аспектам сети.
Например, прозрачность расположения означает, что от пользователя не требуется знаний о месте расположения программных и аппаратных ресурсов, таких как процессоры, принтеры, файлы и базы данных. Имя ресурса не должно включать информацию о месте его расположения, поэтому имена типа mashinel: prog.c или \\ftp_serv\pub прозрачными не являются. Аналогично, прозрачность перемещения означает, что ресурсы должны свободно перемещаться из одного компьютера в другой без изменения своих имен. Еще одним из возможных аспектов прозрачности является прозрачность параллелизма, заключающаяся в том, что процесс распараллеливания вычислений происходит автоматически, без участия программиста, при этом система сама распределяет параллельные ветви приложения по процессорам и компьютерам сети. В настоящее время нельзя сказать, что свойство прозрачности в полной мере присуще многим вычислительным сетям, это скорее цель, к которой стремятся разработчики современных сетей.
Поддержка разных видов трафика
Компьютерные сети изначально предназначены для совместного доступа пользователя к ресурсам компьютеров: файлам, принтерам и т.п. Трафик, создаваемый этими традиционными службами компьютерных сетей, имеет свои особенности и существенно отличается от трафика сообщений в телефонных сетях или, например, в сетях кабельного телевидения. Однако 90-е годы стали годами проникновения в компьютерные сети трафика мультимедийных данных, представляющих в цифровой форме речь и видеоизображение.
Компьютерные сети стали использоваться для организации видеоконференций, обучения и развлечения на основе видеофильмов и т.п. Естественно, что для динамической передачи мультимедийного трафика требуются иные алгоритмы и протоколы и, соответственно, другое оборудование. Хотя доля мультимедийного трафика пока невелика, он уже начал свое проникновение как в глобальные, так и локальные сети, и этот процесс, очевидно, будет продолжаться с возрастающей скоростью.
Главной особенностью трафика, образующегося при динамической передаче голоса или изображения, является наличие жестких требований к синхронности сдаваемых сообщений. Для качественного воспроизведения непрерывных процессов, которыми являются звуковые колебания или изменения интенсивности света в видеоизображении, необходимо получение измеренных и закодированных амплитуд сигналов с той же частотой, с которой они были измерены на передающей стороне. При запаздывании сообщений будут наблюдаться искажения.
В то же время трафик компьютерных данных характеризуется крайне неравномерной интенсивностью поступления сообщений в сеть при отсутствии жестких требований к синхронности доставки этих сообщений. Например, доступ пользователя, работающего с текстом на удаленном диске, порождает случайный поток сообщений между удаленным и локальным компьютерами, зависящий от действий пользователя по редактированию текста, причем задержки при доставке в определенных (и достаточно широких с компьютерной точки зрения) пределах мало влияют на качество обслуживания пользователя сети. Все алгоритмы компьютерной связи, соответствующие протоколы и коммуникационное оборудование были рассчитаны именно на такой "пульсирующий" характер трафика, поэтому необходимость передавать мультимедийный трафик требует внесения принципиальных изменений как в протоколы, так и оборудование. Сегодня практически все новые протоколы в той или иной степени предоставляют поддержку мультимедийного трафика.
Особую сложность представляет совмещение в одной сети традиционного компьютерного и мультимедийного трафика. Передача исключительно мультимедийного трафика компьютерной сетью хотя и связана с определенными сложностями, но вызывает меньшие трудности. А вот случай сосуществования двух типов трафика с противоположными требованиями к качеству обслуживания является намного более сложной задачей. Обычно протоколы и оборудование компьютерных сетей относят мультимедийный трафик к факультативному, поэтому качество его обслуживания оставляет желать лучшего. Сегодня затрачиваются большие усилия по созданию сетей, которые не ущемляют интересы одного из типов трафика. Наиболее близки к этой цели сети на основе технологии ATM, разработчики которой изначально учитывали случай сосуществования разных типов трафика в одной сети.
Управляемость
Управляемость сети подразумевает возможность централизованно контролировать состояние основных элементов сети, выявлять и разрешать проблемы, возникающие при работе сети, выполнять анализ производительности и планировать развитие сети. В идеале средства управления сетями представляют собой систему, осуществляющую наблюдение, контроль и управление каждым элементом сети - от простейших до самых сложных устройств, при этом такая система рассматривает сеть как единое целое, а не как разрозненный набор отдельных устройств.
Хорошая система управления наблюдает за сетью и, обнаружив проблему, активизирует определенное действие, исправляет ситуацию и уведомляет администратора о том, что произошло и какие шаги предприняты. Одновременно с этим система управления должна накапливать данные, на основании которых можно планировать развитие сети. Наконец, система управления должна быть независима от производителя и обладать удобным интерфейсом, позволяющим выполнять все действия с одной консоли.
Решая тактические задачи, администраторы и технический персонал сталкиваются с ежедневными проблемами обеспечения работоспособности сети.
Эти задачи требуют быстрого решения, обслуживающий сеть персонал должен оперативно реагировать на сообщения о неисправностях, поступающих от пользователей или автоматических средств управления сетью. Постепенно становятся заметны более общие проблемы производительности, конфигурирования сети, обработки сбоев и безопасности данных, требующие стратегического подхода, то есть планирования сети. Планирование, кроме этого, включает прогноз изменений требований пользователей к сети, вопросы применения новых приложений, новых сетевых технологий и т.п.
Полезность системы управления особенно ярко проявляется в больших сетях: корпоративных или публичных глобальных. Без системы управления в таких сетях нужно присутствие квалифицированных специалистов по эксплуатации в каждом здании каждого города, где установлено оборудование сети, что в итоге приводит к необходимости содержания огромного штата обслуживающего персонала.
В настоящее время в области систем управления сетями много нерешенных проблем. Явно недостаточно действительно удобных, компактных и многопротокольных средств управления сетью. Большинство существующих средств вовсе не управляют сетью, а всего лишь осуществляют наблюдение за ее работой. Они следят за сетью, но не выполняют активных действий, если с сетью что-то произошло или может произойти. Мало масштабируемых систем, способных обслуживать как сети масштаба отдела, так и сети масштаба предприятия, - очень многие системы управляют только отдельными элементами сети и не анализируют способность сети выполнять качественную передачу данных между конечными пользователями сети.
Совместимость
Совместимость или интегрируемость означает, что сеть способна включать в себя самое разнообразное программное и аппаратное обеспечение, то есть в ней могут сосуществовать различные операционные системы, поддерживающие разные стеки коммуникационных протоколов, и работать аппаратные средства и приложения от разных производителей. Сеть, состоящая из разнотипных элементов, называется неоднородной или гетерогенной, а если гетерогенная сеть работает без проблем, то она является интегрированной. Основной путь построения интегрированных сетей - использование модулей, выполненных в соответствии с открытыми стандартами и спецификациями.
1.2. Модель ISO/OSI
Из того, что протокол является соглашением, принятым двумя взаимодействующими объектами, в данном случае двумя работающими в сети компьютерами, совсем не следует, что он обязательно представляет собой стандарт. Но на практике при реализации сетей стремятся использовать стандартные протоколы. Это могут быть фирменные, национальные или международные стандарты.
Международная Организация по Стандартам (International Standards Organization, ISO) разработала модель, которая четко определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какую работу должен делать каждый уровень. Эта модель называется моделью взаимодействия открытых систем (Open System Interconnection, OSI) или моделью ISO/OSI.
В модели OSI взаимодействие делится на семь уровней или слоев (рис. 1.1). Каждый уровень имеет дело с одним определенным аспектом взаимодействия. Таким образом, проблема взаимодействия декомпозирована на 7 частных проблем, каждая из которых может быть решена независимо от других. Каждый уровень поддерживает интерфейсы с выше- и нижележащими уровнями.
Рис. 1.1. Модель взаимодействия открытых систем ISO/OSI
Модель OSI описывает только системные средства взаимодействия, не касаясь приложений конечных пользователей. Приложения реализуют свои собственные протоколы взаимодействия, обращаясь к системным средствам. Следует иметь в виду, что приложение может взять на себя функции некоторых верхних уровней модели OSI, в таком случае, при необходимости межсетевого обмена оно обращается напрямую к системным средствам, выполняющим функции оставшихся нижних уровней модели OSI.
Приложение конечного пользователя может использовать системные средства взаимодействия не только для организации диалога с другим приложением, выполняющимся на другой машине, но и просто для получения услуг того или иного сетевого сервиса, например, доступа к удаленным файлам, получение почты или печати на разделяемом принтере.
Итак, пусть приложение обращается с запросом к прикладному уровню, например к файловому сервису. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата, в которое помещает служебную информацию (заголовок) и, возможно, передаваемые данные. Затем это сообщение направляется представительному уровню. Представительный уровень добавляет к сообщению свой заголовок и передает результат вниз сеансовому уровню, который в свою очередь добавляет свой заголовок и т.д. Некоторые реализации протоколов предусматривают наличие в сообщении не только заголовка, но и концевика. Наконец, сообщение достигает самого низкого, физического уровня, который действительно передает его по линиям связи.
Когда сообщение по сети поступает на другую машину, оно последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует, обрабатывает и удаляет заголовок своего уровня, выполняет соответствующие данному уровню функции и передает сообщение вышележащему уровню.
Кроме термина "сообщение" (message) существуют и другие названия, используемые сетевыми специалистами для обозначения единицы обмена данными. В стандартах ISO для протоколов любого уровня используется такой термин как "протокольный блок данных" - Protocol Data Unit (PDU). Кроме этого, часто используются названия кадр (frame), пакет (packet), дейтаграмма (datagram).