Реферат: Компоненты, составляющие компьютер
Важнейшей характеристикой, определяющей быстродействие процессора, является тактовая частота, то есть количество тактов в секунду. Такт - это промежуток времени между началами подачи двух последовательных импульсов специальной микросхемой - генератором тактовой частоты, синхронизирующим работу узлов компьютера. На выполнение процессором каждой базовой операции (например, сложения) отводится определенное количество тактов. Ясно, что чем больше тактовая частота, тем больше операций в секунду выполняет процессор. Тактовая частота измеряется в мегагерцах (МГц) и гигагерцах (ГГц). 1 МГц - миллион тактов в секунду. За 20 с небольшим лет тактовая частота процессора увеличилась почти в 500 раз, от 5 МГц (процессор 8086, 1978 год) до 2,4 ГГц (процессор Pentium 4, 2002 год) - см. таблицу.
Тип Год выпуска Частота (МГц) Шина данных Шина адреса Адресуемая память
8086 1978 5-10 16 20 1 Мб
80286 1982 6-12,5 16 24 16 Мб
80386 1985 16-33 32 32 4 Гб
80486 1989 25-50 32 32 4 Гб
Pentium1993 60-166 64 32 4 Гб
Pentium II1997 200-300 64 36 64 Гб
Pentium III1999 450-1000 64 36 64 Гб
Pentium 42000 1000-2400 64 36 64 Гб
Другой характеристикой процессора, влияющей на его производительность, является разрядность процессора. Разрядность процессора определяется количеством двоичных разрядов, которые могут передаваться или обрабатываться процессором одновременно. Часто уточняют разрядность процессора и пишут 64/36, что означает, что процессор имеет 64-разрядную шину данных и 36-разрядную шину адреса.
В первом отечественном школьном компьютере "Агат" (1985 год) был установлен процессор, имевший разрядность 8/16, соответственно одновременно он обрабатывал 8 битов, а его адресное пространство составляло 64 килобайта.
Современный процессор Pentium 4 имеет разрядность 64/36, то есть одновременно процессор обрабатывает 64 бита, а адресное пространство составляет 68 719 476 736 байтов - 64 гигабайта.
Производительность процессора является его интегральной характеристикой, которая зависит от частоты процессора, его разрядности, а также особенностей архитектуры (наличие кэш-памяти и др.). Производительность процессора нельзя вычислить, она определяется в процессе тестирования, по скорости выполнения процессором определенных операций в какой-либо программной среде.
Звуковая карта
К счастью, времена, когда работа за компьютером сопровождалась писком встроенного динамика, давно закончились. Современные звуковые карты могут предоставить солидные возможности для обработки звукового сигнала и превратить даже обычный домашний компьютер в весьма неплохой и функциональный аудиокомплекс. Также нельзя не отметить и тот факт, что прогресс в этой области позволил существенно снизить цены на звуковые платы - то, что раньше считалось прерогативой студии и стоило тысячи долларов, теперь можно приобрести в любом магазине за довольно умеренную цену.
Звуковая карта производит преобразование звука из аналоговой формы в цифровую. Для ввода звуковой информации используется микрофон, который подключается к входу звуковой карты. Звуковая карта имеет также возможность синтезировать звук (в ее памяти хранятся звуки различных музыкальных инструментов, которые она может воспроизводить).
Аудиоадаптер (SoundBlaster или звуковая плата) - это специальная электронная плата, которая позволяет записывать звук, воспроизводить его и создавать программными средствами с помощью микрофона, наушников, динамиков, встроенного синтезатора и другого оборудования.
Аудиоадаптер содержит в себе два преобразователя информации:
• аналого-цифровой, который преобразует непрерывные (то есть, аналоговые) звуковые сигналы (речь, музыку, шум) в цифровой двоичный код и записывает его на магнитный носитель;
• цифро-аналоговый, выполняющий обратное преобразование сохранённого в цифровом виде звука в аналоговый сигнал, который затем воспроизводится с помощью акустической системы, синтезатора звука или наушников.
Профессиональные звуковые платы позволяют выполнять сложную обработку звука, обеспечивают стереозвучание, имеют собственное ПЗУ с хранящимися в нём сотнями тембров звучаний различных музыкальных инструментов. Звуковые файлы обычно имеют очень большие размеры. Так, трёхминутный звуковой файл со стереозвучанием занимает примерно 30 Мбайт памяти. Поэтому платы SoundBlaster, помимо своих основных функций, обеспечивают автоматическое сжатие файлов. Область применения звуковых плат — компьютерные игры (на многих звуковых платах есть специальный Game-порт, к которому подключаются игровые манипуляторы), обучающие программные системы, рекламные презентации, "голосовая почта" (voicemail) между компьютерами, озвучивание различных процессов, происходящих в компьютерном оборудовании, таких, например, как отсутствие бумаги в принтере и т.п. Но главная, и часто используемая возможность современной звуковой карты - это способность воспроизводить аудио и видео-файлы, хранящиеся на компьютере.
Что находится на звуковой карте?
На типичной звуковой карте могут находиться следующие разъемы:
Внешние:
1. Игровой, или MIDI-порт. Самый большой и заметный 15-контактный разъем-гнездо, предназначен для подключения джойстика, MIDI-клавиатуры или чего-либо иного, работающего через MIDI-интерфейс, напрмер синтезатор. В последнее время MicrosoftcIntel и некоторыми другими компаниями активно нападают на этот порт и говорят, что в современном компьютере ему не место, но он, очевидно, умирать пока не собирается.
2. Линейный вход
3. Микрофонный вход
4. Линейный выход для подключения активных колонок или усилителя. Он может быть не один, если плата рассчитана на подключение более двух колонок.