Реферат: Композиции шифров

Рассмотрим несколько примеров:

Пример 1. Возьмем в качестве открытого текста сообщение: «Я пишу курсовую».

Защитим этот текст методом простой перестановки, используя в качестве ключа слово "зачет" и обозначая пробел буквой "ь". Выписываем буквы открытого текста под буквами ключа. Затем буквы ключа расставляем в алфавитном порядке. Выписываем буквы по столбцам и получаем шифртекст: ььоиууяусшрюпкв.

Полученное сообщение зашифруем с помощью метода подстановки:

Пусть каждому символу русского алфавита соответствует число от 0 до 32. То есть букве А будет соответствовать 0, букве Б - 1 и т.д. Возьмем также некое число, например, 2, которое будет ключом шифра. Прибавляя к числу, соответствующему определенному символу 2, мы получим новый символ, например, если А соответствует 0, то при прибавлении 2 получаем В и так далее. Пользуясь этим, получаем новый шифртекст: ююркххбхуьтасмд.

Итак, имея открытый текст: «Я пишу курсовую», после преобразований получаем шифртекст: ююркххбхуьтасмд, используя методы перестановки и замены. Раскрыть текст расшифровщик сможет, зная, что ключами являются число 2 и слово "зачет" и соответственно последовательность их применения.

Пример 2. В качестве примера также рассмотрим шифр, предложенный Д. Френдбергом, который комбинирует многоалфавитную подстановку с генератором псевдослучайных чисел. Особенность данного алгоритма состоит в том, что при большом объеме шифртекста частотные характеристики символов шифртекста близки к равномерному распределению независимо от содержания открытого текста.

1. Установление начального состояния генератора псевдослучайных чисел.

2. Установление начального списка подстановки.

3. Все символы открытого текста зашифрованы?

4. Если да - конец работы, если нет - продолжить.

5. Осуществление замены.

6. Генерация случайного числа.

7. Перестановка местами знаков в списке замены.

8. Переход на шаг 4.

Пример 3. Открытый текст: "АБРАКАДАБРА".

Используем одноалфавитную замену согласно таблице 1.

Таблица 1:

А

Б

Д

К

Р

X

V

N

R

S

Последовательность чисел, вырабатываемая датчиком: 31412543125.

1. у1 =Х.

После перестановки символов исходного алфавита получаем таблицу 2 (h1 =3).

Таблица 2:

Д

Б

А

К

Р

X

V

N

R

S

2. у2 =V. Таблица 2 после перестановки (h2 =1) принимает вид, представленный в таблице 3.

Таблица 3:

Б

Д

А

К

Р

X

V

N

R

S

Осуществляя дальнейшие преобразования в соответствии с алгоритмом Френдберга, получаем шифртекст: "XVSNSXXSSSN".

Одной из разновидностей метода гаммирования является наиболее часто применяемый метод многократного наложения гамм. Необходимо отметить, что если уik1 (xi )), то Гk1 (xi ))=Г1k (xi )). (1*)

Тождество (1*) называют основным свойством гаммы.

Пример 4. Открытый текст: "ШИФРЫ"(25 09 21 17 28");

Г1 = "ГАММА" ("04 01 13 13 01");

К-во Просмотров: 514
Бесплатно скачать Реферат: Композиции шифров