Реферат: Конспект лекций и ответы на экзаменационные вопросы по предмету Термическая Обработка

Для малоуглеродистых сталей свойства после отжига и после нормализации практически совпадают, поэтому для малоуглеродистых сталей отжиг всегда заменяют на нормализацию. Нормализацию применяют и как окончательный вид термообработки и как промежуточный, например, между операциями холодной деформации для снятия наклепа или перед обработкой резанием для уменьшения твердости.

  1. Патентирование.

Это особый вид отжига, который применяется для изготовления высокопрочной проволоки.

Низкая температура превращения позволяет получить равномерную мелкую структуру. Такая структура называется троостит. После отжига сталь подвергают холодной деформации, волочению. В результате мелкой структуры и наклепа позволяют получить металл прочностью 2000-5000 Мпа.

Отжиг заэвтектоидной стали.


1. Отжиг на сфероинизацию является неполным, поэтому при нагреве полного растворения цементитных включений не происходит. В процессе охлаждения оставшиеся включений цементита при распаде аустенита. В результате форма включений цементита меняется. Из бывшей пластинчатой она превращается в округлую сферическую. Поэтому такой отжиг называется сфероинизирующим. Изменение формы включений цементита позволяет повышать вязкость стали; облегчает процесс обработки резанием. Такая структура стали является идеальной перед закалкой. Для ускорения процесса сфероинизации иногда применяют отжиг с циклированием температуры на 20-30є С выше или ниже точки А1. Такой отжиг называют маятниковым.

При нагреве стали происходит растворение краев цементитных пластин, при охлаждении же цементит выделяется равномерно по всей поверхности. Поэтому при таком виде отжиге процессе сфероинизации идет быстрее.


2. Нормализация.

Применяется для заэвтектоидной стали с целью устранения выделений цементита по границам зерен. Сплошная цементитная сетка крайне нежелательна. Она образуется при медленном охлаждении с высоких температур. Нагрев сталей до температур выше точки Аст приводит к растворению цементитной сетки по границам зерен. При ускоренном охлаждении на воздухе вторичный цементит выделяется в виде отдельных включений, не образуя сплошной сетки по границам зерен. В результате вязкость стали восстанавливаются.


Закалка сталей.

Закалкой называют термообработку, включающую в себя нагрев сталей до температур выше критических и быстрое, резкое охлаждение, с целью получения высокой прочности и твердости. Различают закалки объемную и поверхностную. При объемной закалке нагревают и охлаждают весь объем детали, при поверхностной – только поверхность.

В зависимости от температуры нагрева закалка бывает полной и неполной. При полной закалке сталь нагревают выше точки А3. Полная закалка применяется для доэвтектоидной стали. В этом случае при нагреве выше точки А3 сталь имеет полностью аустенитную структуру и после резкого охлаждения имеет полностью мартенситную структуру. При неполной закалке полного превращения не будет, и оставшийся в структуре феррит не даст получить высокой твердости и прочности. Поэтому в доэвтектоидной стали неполную закалку не применяют. Для заэвтектоидной стали применяют только неполную закалку. В этом случае вторичный цементит, который сохраняется в стали, дополнительно повышает твердость закаленных сталей. Если же применить полную закалку, то вторичный цементит растворяется в аустените. Это сопровождается резким увеличением зерна. После охлаждения в такой стали будет большое количество остаточного аустенита. Это дополнительно уменьшит твердость стали, поэтому для заэвтектоидной стали полная закалка никогда не применяется. Выдержка при закалке стали должна быть такой, чтобы успели пройти все структурные и фазовые превращения. Однако она не должна быть чрезмерной, чтобы не вызвать роста аустенитного зерна. Обычно ориентировочно выдержку детали принимают из расчета 1 минуту на 1 миллиметр толщины для нагрева и + 1 минута на 1 миллиметр толщины для выравнивания температуры по сечению и прохождения всех структурах и фазовых превращений. Охлаждение при закалке должно быть резким, для того, чтобы не допустить образования перлита, но в то же время – максимально медленным, чтобы уменьшить уровень внутренних напряжений, образующихся в деталях при резком охлаждении. Внутренние напряжения должны быть термические и структурные. Термические возникают из-за неодинаковой скорости охлаждения поверхности и центров массивных деталей, а также при неодинаковой скорости охлаждения тонких и толстых сечений детали.

Структурные напряжения возникают из-за объемного эффекта (v ↑) при переходе А→ М. В зависимости от содержания углерода этот объемных эффект достигает 5-6%. Уровень внутренних напряжений может быть настолько велик, что в результате происходит искажение формы детали или ее растрескивание.

Охлаждение при закалке может вестись в предельных средах (вода, масло минеральное, водо-воздушные смеси). От скорости охлаждения зависит структура, которая в стали после закалки. Если скорость недостаточная, то получает перлитная структура. Они отличаются друг от друга различным размером частиц перлита и цементита. Если скорость охлаждения при закалке достаточно велика, для того, чтобы не образовался перлит, но слишком мала для образования мартенсита в сталях, появится промежуточная структура – бейнит. Внешне она имеет игольчатую структуру как мартенсит, но сами иглы представляют собой феррит, внутри которого выделяется мельчайшие частицы цемента. Если скорость охлаждается стали превышает критическую скорость, то образуется в мартенсит, обеспечивающий максимальную твердость в закаленной стали. Наиболее эффективное охлаждение обеспечивает вода, но её недостаток – слишком быстрое охлаждение в интервале мартенситного превращения. В результате возникают большие внутренние напряжения. Минеральное масло наоборот дает малую скорость охлаждения в области мартенситного превращения, но не достаточно быструю в области перлитного превращения.


Способы закалки.

Для того, чтобы обеспечить закалку сталей на мартенсит необходимо быстро охлаждать её в области перлитного превращения. Но если с такой же скоростью охлаждать её и дальше в области мартенситного превращения, то в детали возникают резкие закалочные напряжения. Поэтому желательно проводить охлаждение в области мартенситного превращения по возможности медленнее, но среды с переменной скоростью охлаждения не существует и поэтому для разных деталей применяют различные способы охлаждения, чтобы получить закаленное состояние с минимум уровнем внутренних напряжений.

1. Охлаждение в одном охладителе (воде, масле). Недостаток - очень резкие внутренние напряжения. Чтобы их уменьшить применяют второй способ закалки.

2. Закалка в двух средах (из воды в масло). По этому способу в начале деталь охлаждают в воде, до температуры ниже перлитного превращения, а затем перебрасывают до окончательного охлаждения в масло. Этот способ сложен и требует высокой квалификации рабочих, от которых требуется выдерживать деталь определенное количество времени в воде. Если выдержка будет мала, то при дальнейшем охлаждении попадаем в перлитное превращение, и закалки не будет, а если выдержка слишком большая, то в деталях возникают большие внутренние напряжения.

3. Ступенчатая закалка. При ступенчатой закалке нагретую деталь охлаждают быстро до заданной температуре в специально горячей среде, в качестве которой используются расплавы металлов или солей. Время выдержки в горячей среде определяются маркой стали и может быть четко определено по секундомеру, после этого идет окончание охлаждение в воде или масле. Выдержка в горячей среде позволяет выровнять температуру по всему сечению деталей, поэтому при окончательном охлаждении в воде, или масле превращение аустенита в мартенсит идет одновременно по всему объему детали, что позволяет резко снизить уровень внутренних напряжений. Такой способ закалки применяют для крупногабаритных деталей сложной формы, чтобы до минимума снизить искажение формы.

4. Изотермическая закалка. Этот способ применяется для крупногабаритных деталей, которые нельзя охлаждать очень быстро, из-за опасности разрушения. При изотермической закалке нагретые детали помещают в горячую среду, нагретую до заданной температурой 350-400 градусов, в которой выдерживают до полного прохождения превращения аустенита в троостит или бейнит. После полного превращения деталь обычно охлаждается на воздухе. Дополнительного отпуска после такой закалке не требуется. Температура окружающей среды выбирается термообработкой, чтобы получить в детали структуру, обеспечивающую заданную твердость.

5. Закалка с обработкой холодом. При закалке высокоуглеродистых сталей, содержащих никель, молибден, вольфрам даже после полного охлаждения до нормальной температуры превращение аустенита в мартенсит проходит не полностью. Остаточный аустенит имеет невысокую твердост?

К-во Просмотров: 500
Бесплатно скачать Реферат: Конспект лекций и ответы на экзаменационные вопросы по предмету Термическая Обработка