Реферат: Конструктивное исполнение электродов в первичных химических источниках тока
Марганцево-магниевыеХИТ. Производятся марганцево-магниевые ХИТ цилиндрической конфигурации в двух конструктивных формах: обычной и с внутренним анодом. Обычная форма аналогична форме цилиндрических марганцево-цинковых ХИТ с солевым электролитом. Элемент имеет внешний магниевый стакан, являющийся анодом, и внутренний прессованный или полученный экструзией катод с графитовым центральным токоотводом. Элемент снабжен клапаном для отвода газа при повышении давления. Элемент с внутренним анодом (рис.2.8.7) имеет два катода 1 с внешней и внутренней сторон магниевого цилиндрического анода 2. Анод отделяется от катода пористым бумажным сепаратором с раствором электролита. Катодный токоотвод 3 находится как в центре цилиндра, так и образует внешний цилиндр элемента. Элемент помещается в стальной луженый корпус. Магниевый анод содержит небольшие добавки алюминия и цинка. Катод состоит из,% (по массе): ацетиленовой сажи - 10, хромата бария - 3, гидроксила магния (буферная добавка) - 1, диоксида марганца - остальное. На 10 мае. ч. сухого вещества вводят 4 мае. ч. раствора электролита. Электролит содержит
1,2-2 ????/? Mg (C104) 2 ? 0,2 ?/? ??????? ?????.
При создании батарей элементов учитывается необходимость отвода теплоты при 20 °С и выше и изоляции при низких температурах окружающей среды. Принимается во внимание также необходимость удаления водорода.
2. Конструктивное исполнение электродов в резервных химических источниках тока
2.1. Водоактивируемые источники тока
??????????? ? ???????????? ??????? ?????????? ? ???????????? ???????????. ???????????? ???????? ??????????? ???????????? ??? ?????????? ????????????. ?????????? ????????? ??????????? ????? ??????? ? ??????????, ??????????? ?? ????????? ???? ??? ?? ?????? ?? ?????? ????????? (? ??? ? ???????? ????). ? ???????? ??????????? ?????????? ?????????? ??????????? ????????? ???? ??????. ?????? ??-?? ???????????? ????????? ????????????? ???????????? ??????????? (??? ??????? ???? 2,9 ??/? ??? ? ?? ? 5,85 ??/? ??? 30 ??) ???? ?????? ? ???????????????? ??? ?????? ????????. ? ????????, ? ??????? ???????????? ??????????? ? ????? ??????? ?????????????, ????????????????? ?????? ????? ?????????? ????? ??????? ????????????? ?????????????, ?????????? ????? ?????? ??????? ???????? ????? ??????.
Применяются батареи погружного, наливного и проточного типов. Корпус батареи погружного типа имеет отверстия и щели или не имеет дна. При погружении морская вода поступает снизу и (или) сбоку и активирует ХИТ. Время работы может варьировать от нескольких минут до нескольких дней. Наливные ХИТ имеют сепараторы, пропитанные раствором хлорида натрия и затем высушенные. На рис.3.2.1. представлена схема наливной батареи системы Mg-AgCl. Для активации ХИТ заливаются пресной или морской водой. Активация продолжается от 3 до 30 мин в зависимости от температуры и солености воды. Время разряда их составляет от получаса до суток. В проточных батареях морская вода принудительно двигается между электродами. Специальный насос обеспечивает рециркуляцию воды. Благодаря циркуляции электролита, повышения температуры из-за выделения теплоты и применения непассивирующихся анодов достигаются высокие плотности тока (до 5 А/м2) и удельная мощность (до 1,2 кВт/кг). Время разряда не превышает 15 мин.
2.2. Ампульные источники тока
Существует целый ряд вариантов конструкций ампульных батарей, которые с момента их создания совершенствовались, но без принципиальных изменений. Основными общими требованиями, предъявляемыми к конструкции, являются: длительный срок сохраняемости в сухом заряженном состоянии, быстрота и безопасность процессов активации, высокая надежность в эксплуатации при воздействии ударных, вибрационных и линейных нагрузок, а в отдельных случаях обеспечение работоспособности источников тока при отрицательной температуре.
Решение этих проблем достигается разными способами, причем особенности конструкции ампульных ХИТ зависят от предъявляемых требований. Конструкции батарей могут быть условно разделены на ряд основных узлов, которые являются принципиально общими для всех батарей с теми или иными конструктивными особенностями. Такими узлами можно считать следующие:
· собственно батарея, состоящая из последовательно соединенных отдельных элементов или секций элементов. В большинстве случаев сосуд каждого элемента имеет два или несколько отверстий для ввода электролита, выхода воздуха и газа. В некоторых конструкциях в этих отверстиях устанавливаются клапаны того или иного устройства;
· резервуары для хранения электролита до момента активации батареи. Резервуары обычно выполняются в виде баллонов. Они могут конструктивно не представлять собой единого целого с батареей и после приведения в действие могут отделяться, что повышает ее удельные характеристики. В некоторых вариантах конструкций, особенно батарей малых габаритов, электролит хранится в трубках малого диаметра и выдавливается непосредственно газом;
· устройства для выдавливания электролита в элементы из баллонов. В качестве последних применяются трубопроводы для подачи газа под определенным давлением, баллоны со сжатым газом, которые могут находиться как в самой батарее, так и вне ее, различные пиротехнические устройства для получения газа в количествах, необходимых для создания в системе требуемого давления;
· узел, осуществляющий раздельное хранение электролита и элементов. Этот узел чаще всего выполнен в виде диафрагмы, которая разрывается в момент приведения батареи в действие, открывая путь электролиту в элементы. Разрыв диафрагмы может осуществляться прокалыванием ее острием ножа, чисто механическим давлением, а также под давлением газов, образующихся при взрыве пиропатрона. Известны варианты разрыва диафрагмы посредством прожигания с помощью импульсов электрического тока, пропускаемого по нити накаливания, проходящей через диафрагму. Этот узел конструктивно может быть выполнен также в виде клапана;
· узел распределения электролита между элементами батареи. В некоторых конструкциях батарей он выполнен в виде панелей с каналами и отверстиями для прохода электролита, иногда - в виде распределительных труб. В батареях с многоампульной заливкой электролит подается индивидуально в каждый элемент;
· система подогрева для батарей, рассчитанных на работу в условиях отрицательных температур. Эта система выполняется в виде пиротехнических устройств или электрических нагревателей. Известны патенты, предлагающие осуществить подогрев элементов батареи за счет теплоты, выделяемой при химических реакциях, происходящих при разряде батареи.
Помимо перечисленных выше основных узлов можно отметить наличие в батареях клапанов различных конструкций и назначений.
Специфические особенности имеют и собственно батареи ампульного типа. Расположение электродов и конструкция сепараторов должны позволять поступающему в сосуды электролиту проникать ко всем электродам и распространяться по их поверхности. Это достигается применением сепараторов с выступающими прожилками. Для улучшения смачиваемости сепараторы пропитываются поверхностно-активными веществами или эти вещества вводятся в электролит.
С целью улучшения работоспособности источников тока при интенсивных режимах разряда применяются различные способы увеличения внутренней поверхности электродов. Особенно важное значение это имеет для цинковых электродов. В СЦ-батареях применяются цинковые электроды, состоящие из нескольких слоев перфорированной или растяжной фольги, многослойные электроды сетчатой конструкции и электроды с губчатым осадком цинка. Эти способы позволяют значительно увеличить поверхность электрода и обеспечить его работоспособность при высоких плотностях тока.
Среди возможных конструкций батарей в качестве основных можно выделить следующие варианты:
- многоампульные или одноампульные;
- с нижней или верхней заливкой;
- ? ??????????????? ??????????? ??? ??? ????.
В многоампульных батареях каждый из входящих в ее состав элементов заливается из индивидуального заливающего устройства (рис.3.3.2). Диафрагмы, отделяющие элемент от электролита, прорываются одновременно, и электролит выливается в элемент в течение очень короткого времени - за несколько секунд. Преимуществом таких батарей является точное за полонение каждого элемента необходимым количеством электролита. Недостатком - большое количество компонентов, входящих в состав батареи, что снижает ее надежность.
Одноампульные батареи обычно состоят из одного или двух рядов элементов, в которые электролит заливают из одной или двух ампул (рис.3.3.3). Приведение в действие рассматриваемого варианта конструкции осуществляется с помощью сжатого газа, находящегося в специальном баллоне. Сжатый газ может подводиться к батарее и от внешнего магистрального трубопровода. Он поступает в баллон с электролитом и вытесняет его в элементы батареи, при этом разделительная диафрагма прорывается острым ножом. Проход газа в батарею предотвращается растягивающейся эластичной камерой.
????? ???????????? ?????????????? ????????? ? ??????? ????????? ?????????? ????????? ? ???????? ????? ????????????????? ?????? ??? ?? ??????? ????? ??????? ? ??? ??? ?????? ??????.
Вытесняемые из элементов воздух и газ, выделяющиеся при работе батареи, удаляются через магистраль в специальный резервуар (отстойник), оснащенный клапаном для выхода избыточного газа. При нижней заливке электролит распределяется равномерно, так как уровень его в элементах может выравниваться по закону сообщающихся сосудов. При верхней заливке равномерности распределения электролита достичь сложнее, но конструктивно легче решается вопрос о сведении к минимуму саморазряда элементов.
В тех случаях, когда батарея должна разряжаться при пониженных температурах, она снабжается нагревателями. Чаще всего используются электрические нагреватели, которые встраиваются в баллон с электролитом. Иногда предусматривается обогрев и самих элементов, но он менее эффективен. Поэтому он используется одновременно с обогревом электролита. Такой вид обогрева позволяет термостатировать батарею в течение установленного времени или подогревать ее периодически для приведения в действие.
Известны батареи, в которых электролит предварительно не нагревается, а проходит через теплообменники во время заливки.
Это имеет как преимущества, так и недостатки. Сокращается время готовности батареи, но в то же время одноразовый подогрев исключает возможность хранения батареи в залитом состоянии при пониженных температурах.
Рассмотренные конструкции дают общее представление о принципе конструирования ампульных батарей одноразового действия, но не исчерпывают всего многообразия конструкций.
Развитие источников тока ампульного типа за рубежом и в России шло в аналогичных направлениях. Выпускаемые ОАО "АК Ригель" батареи имеют емкость от 2,8 до 200. А ч и по своим параметрам соответствуют уровню зарубежных ампульных источников тока.
Основы технологии ампульных СЦ-батарей. Специфичность условий эксплуатации источников тока ампульного типа обусловила необходимость специального выбора материалов для изготовления, как самих источников тока, так и заливающих устройств.
Отрицательный электрод для СЦ-батарей одноразового действия подвергался последовательному ряду усовершенствований. Вслед за применявшимся первоначально перфорированным цинком получили применение электроды с каркасом из сеток с электролитические нанесенным плотным осадком цинка, электроды из просеченной фольги, затем электроды с электролитические осажденным в щелочном электролите губчатым цинком.
Работоспособность этих электродов можно оценить по удельной емкости и максимально допустимой плотности тока.
Электрод с электролитически осажденной цинковой губкой превосходит другие электроды не только по допустимой плотности тока, но и по работоспособности при пониженных температурах. При оптимальной степени уплотнения активной массы (пористость не менее 60%) он работоспособен при плотностях тока до 40 А/дм2 при температурах от - 5 до +50 °С.