Реферат: Конструкции элементов полупроводниковых микросхем на МДП-транзисторах
Некоторые из этих вариантов в дальнейшем нами будут рассмотрены с точки зрения конструктивного и технологического их исполнения.
МДП-транзисторы могут служить в схеме и в качестве конденсаторов, для чего можно использовать емкости структур затвор - подложка или емкости обратносмещенных р-п переходов сток (исток) - подложка.
Таким образом, МДП-транзистор может быть основным и единственным элементом, МДП-транзистор может быть основным и единственным элементом МДП-микросхем. Он может выполнять функции - как активных приборов (ключевой транзистор в инверторе, усилительный транзистор), так и пассивных элементов (нагрузочный транзистор в инверторе, конденсатор в элементе памяти). При проектировании МДП-микросхем можно обходиться только одним элементом - МДП-транзистором, конструктивные размеры которого и схема включения будут зависеть от выполняемой функции.
Рис.3. Электрическая схема инвертора с входной шиной, подключенной к охранным диодам (а), и конструкция шины с охранными диодами (б).
Это обстоятельство дает существенный выигрыш в степени интеграции (полупроводниковые резисторы и конденсаторы занимают большую площадь и требуют для себя отдельную изолированную область, кроме того, наличие пассивных полупроводниковых элементов влечет за собой появление дополнительных паразитных элементов, в частности паразитных емкостей, существенно ухудшающих частотные свойства микросхем).
ВСПОМОГАТЕЛЬНЫЕ ЭЛЕМЕНТЫ МДП-МИКРОСХЕМ
Вспомогательные элементы в МДП-микросхемах предусматриваются для защиты приборов от воздействия статического электричества в процессе их производства и эксплуатации, а также для борьбы с паразитными каналами.
Охранные диоды предусматриваются во входных цепях МДП-микросхем и предназначены для предотвращения пробоя подзатворного диэлектрика под действием зарядов статического электричества, накапливающегося на одежде и руках операторов, на инструменте монтажника и технологической оснастке. Заряд этот может быть любого знака. Диоды VD1 и VD2 (см. рис 3), подключенные к входной шине инвертора, позволяют положительному заряду стекать через диод VD1, а отрицательному - через диод VD2. При проектировании охранных диодов необходимо обеспечить высокое напряжение прибоя р-п переходов диодов (более 2Uи. п) и малые паразитные емкости. Первое требование выполняется использованием в качестве одной из областей диода VD1 низколегированной подложки, а для диода VD2 - низколегированной р-области. Второе требование выполняют минимизацией площади р-п переходов.
Недостатками рассмотренной схемы защиты и конструкций охранных диодов являются уменьшение входного сопротивления МДП-микросхемы и появление входного тока утечки, а также то, что при Uвх > Uи. п. через входную цепь могут протекать большие токи, что приводит к разрушению диодов. Часто используют и более простые схемы защиты с одним охранным диодом (рис.4).
Охранные кольца. При наличии положительного встроенного заряда в толстом окисле и положительного потенциала на алюминиевых шинах разводки создаются условия для формирования паразитного индуцированного и-канала в приповерхностных участках кремния р-типа электропроводности с низким уровнем легирования. Увеличение толщины диэлектрика hт.д. (рис.1) над опасными участками не всегда возможно и не всегда гарантирует отсутствие паразитного канала.
Рис.4. Конструкция n-канального транзистора с охранным диодом: l-подложка г-типа; 2, 7-алюминиевые шины; 3, 6-области истока и стока; 4-алюминиевый затвор; 5 - подзатворный окисел; 8 - контакт истока с подложкой; 9 - охранный диод; 10 - катод защитного диода; 11-толстый окисел.
Рис.5. Охранные кольца в структуре инвертора с п - и р-ка-нальным транзисторами: l - область формирования пара-зитного канала р-типа; 2 - область формирования паразитного канала п-типа; 3-n+-области охранного кольца; 4-p+-области охранного кольца.
Эффективным средством против возникновения сквозных паразитных каналов является формирование кольцевой каналоограничивающей р+-области, в которой инверсия проводимости вследствие высокого уровня легирования поверхности практически невозможна. Для полного исключения возможности формирования паразитного канала на р+-область охранного кольца можно подать самый низкий потенциал схемы (рис.5).
Паразитный р-канал может образоваться между р+-областью истока р-канального транзистора и p-областью, в которой расположен n-канальный транзистор, при отрицательном потенциале на алюминиевом проводнике. Вероятность появления этого канала тем выше, чем ниже уровень легирования n-подложки. Охранная кольцевая область n+-типа, соединенная с точкой схемы, имеющей самый высокий потенциал (+Uи. п), предотвращает появление сквозного паразитного канала на этом участке схемы.
Применение охранных колец существенно увеличивает площадь элементов и снижает степень интеграции МДП-микросхем.
ЛИТЕРАТУРА
1. Ненашев А.П. Конструирование радиоэлектронных средств: Учеб. для радиотехнических спец. вузов. – Мн.: Высшая школа, 2000.
2. Основы конструирования изделий радиоэлектроники: Учеб. пособие / Ж.С. Воробьева, Н.С. Образцов, И.Н. Цырельчук и др. – Мн.: БГУИР, 2001