Реферат: Контроль качества сгорания топлива в методических нагревательных печах

Рис2

топлива температуру в области, контролируемой датчиком. На рис. 2 показана принципиальная схема локальной системы, позволяющей реализовать описанные выше способы управления режимом сжигания топлива.

Измерение расхода воздуха выполняется с помощью диафрагмы/ и дифманометра 1 (ДМ-Э). Поправка к показаниям расходомера формируется с помощью ТП 2(ТХА-151), нормирующего преобразователя 3 (Ш-72) и блока нелинейного преобразования 4 (БНП). Вычисление расхода воздуха, приведенного к стандарт­ным условиям, выполняется блоком умножения 5 (БВО), сигнализация достижения минимального расхода, еще обеспечивающего устойчивую работу горелок — блоком б (БСГ).

Величина заданного Со устанавливается на выносном задатчике 7 (РЗД), выход­ной сигнал которого суммируется с сигналами коррекции в сумматоре блока 8 (БВО). Там же осуществляется деление вычисленного расхода воздуха на скор­ректированное значение Со. Расход топлива измеряется с помощью

диафрагмы 11 и дифманометра 9 (ДМ-Э) . Для формирования импульса, уменьшающего запаздывание, служат датчик поло­жения вала И.М. 10 (МЭО 25/100) при P.O. IV


и дифференциатор 11 (ЭД). С по­мощью преобразователя 12 (БНП) реализуется зависимость, в соответствии с кото­рой изменяются параметры динамической настройки регулятора 13 (РБИ-3) при изменении тепловой нагрузки. Для перехода на дистанционное управление служит блок 14 (БРУ-У), соединенный через пускатель 75 (ПРБ-74) с двигателем 16 (МЭО 25/100), перемещающим P.O. III.

Теплота сгорания топлива контролируется датчиком 17 (КГ-7093.01), корректирующий импульс формируется во вторичном приборе 18 (КГ-7093.02). Кор­рекция задания при изменении тепловой нагрузки осуществляется с помощью блока 19 (БНП). Корректирующий импульс по содержанию О^ в продуктах сго­рания зоны печи V может поступать в зависимости от положения переключателя 111 либо от комплекта, состоящего из устройства отбора и подготовки пробы 20, автоматического газового анализатора 21 (МН-5106) и интегратора 22 (БПИ), либо от датчика с твердым электролитом 23 в комплекте с преобразователем 24 (Циркон), либо, наконец, от датчика 25, расположенного в пламени горелки VI, и преобразователя 26. В последнем случае ТП датчика 25 через преобразователь 27 подключается на вход регулятора температуры рабочего пространства. Заданная концентрация О2 в месте установки соответствующего датчика вводится с помощью задатчика 28 (РЗД).

Экстремальное регулирование выполняется с помощью датчика 29 (ТЕРА-50) и экстремального регулятора 30 (ЭРБ), подключаемого через ключи 111 и П2 к сумматору блока 8 или через ключ П2 непосредственно к блоку 14 в зависимости от типа выходного сигнала регулятора 30.

При переводе переключателя Я в положение а, Ъ и d элементы схемы 1, 2, 3, 4, 5, 6, 7, делитель блока 8, элементы 9, 17, 18, 19, 20, 21 и 22 непосредственно в регулировании могут не участвовать.

Наладка системы на объекте состоит в определении исходных параметров ди­намической настройки регулятора 13, выполняемом по известным методикам на основании кривой разгона, снятой при тепловой нагрузке порядка 70-80% от максимальной; настройке блока 12 для обеспечения постоянного характера переходного процесса в широком диапазоне изменения тепловой нагрузки и наст­ройке блока 19 по результатам газового анализа для обеспечения постоянного состава атмосферы печи. Все остальные элементы проходят предварительную при­борную наладку в соответствии с инструкциями по их эксплуатации до установки на объекте и периодически поверяются в дальнейшем.

При. сжигании топлива одна из главных проблем — обеспечение оптимального соотношения между количеством подаваемых в топку топлива и воздуха.

Для каждой конкретной установки существует оптимальный избыток воздуха, который соответствует наиболее экономичному протеканию процесса сжигания. Недостаток воздуха при горении способствует образованию токсичных продуктов неполного сгорания, вызывает перерасход топлива. Избыток воздуха также приводит к перерасходу топлива на нагрев лишнего воздуха в составе отходящих газов. В обоих случаях сжигание топлива сопровождается повышенным выбросом в атмосферу высокотоксичных оксидов азота. Одним из наиболее достоверных способов определения избытка воздуха является анализ газовой cмеси, покидающей камеру сгорания, а именно определение концентрации кислорода в топочных газах. В соответствии с «Ин­струкцией по проектированию и безопасной эксплуатации фа­кельных установок для горючих газов и паров» должен осущест­вляться автоматический контроль за концентрацией кислорода в газах, сбрасываемых на факел. Концентрация кислорода в такой газовой смеси не должна превышать ≈2 % (об.).

Литературный обзор.

Методы определения

Известны следующие методы определения концентрации молеку­лярного кислорода: химические, электрохимические, с исполь­зованием топливных элементов, термокондуктометрический, акустический, пневматический, ионизационный, оптические, масс-спектрометрический, магнитные, с использованием полупроводни­ковых чувствительных элементов, хроматографические.[3]

Термохимический метод .

Метод основан на измерении теплового эффекта экзотермической химической реакции, в которой участвует определяемый компонент пробы АГС.

Повышение температуры, определяющееся значением теплового эффекта реакции, пропорционально концентрации горючего (определяемого) компонента. Для определения -концентрации кислорода этим методом используют реакцию взаимодействия кислорода с водородом:

О2 + 2Н2 =2Н2 О + 4,84364-105 Дж.

Процесс стационарного беспламенного горения происходит на крупинках мелкораздробленного катализатора с развитой поверхностью, через который просасывается проба АГС. Температура поверхности, которая в данном случае является измеряемой физической величиной, не зависит от истинной кинетики каталитической реакции, т. е. от активности катализатора.

Теоретически повышение температуры за счет реакции равно:

T-T0 =C(Q0 /nCv )(1)

где Т — температура поверхности; Т0 температура среды; С — концентрация горючего (определяемого) компонента; Q0 — теплота реакции; п — число молекул в единице объема; Cv молекулярная теплоемкость при постоянном объеме.

Значение Q0 постоянно, п зависит от давления и в известной степени от температуры, Cv — функция состава пробы АГС.

Повышение температуры на 1,0% (об.) кислорода должно составить: Т02 = 161°С.

Однако практически повышение температуры значительно ниже за счет потерь тепла и составляет 20—25 % от теоретического.

Различают два варианта термохимического метода анализа состава.

В первом варианте определяемый компонент пробы АГС сгорает непосредственно на чувствительном элементе (ЧЭ), в качестве которого, как правило, используют терморезистор. Терморезистор является одновременно катализатором или покрыт слоем катализатора; повышение температуры А/ терморезистора является функцией концентрации определяемого компонента пробы АГС:

(2)

где К — коэффициент, характеризующий конструкцию реакционного объема; ( — коэффициент, характеризующий полноту сгорания; С — концентрация определяемого компонента; q — теплота его сгорания.

Во втором варианте пробу АГС пропускают через камеру, и на насыпном слое катализатора протекает реакция, в результате которой повышается его температура, являющаяся функцией концентрации определяемого компонента пробы АГС:

(7)

где Q — расход пробы АГС; а и b— коэффициенты, учитывающие характер теплообмена в реакционной зоне.

Температуру катализатора можно измерить, например, термопарой, сравнительный спай которой помещается в потоке АГС до катализатора, а измерительный спай — непосредственно в катализаторе.

К-во Просмотров: 664
Бесплатно скачать Реферат: Контроль качества сгорания топлива в методических нагревательных печах