Реферат: Контрольна робота по Інформаційне забезпечення
Одновременно с измерениями исполнитель должен проводить предварительную обработку результатов и их анализ. Здесь особо должны проявляться его творческие способности. Такой анализ позволяет контролировать исследуемый процесс, корректировать эксперимент, улучшать методику и повышать эффективность эксперимента.
Вначале результаты измерений сводят в таблицы по варьирующим характеристикам для различных изучаемых вопросов. Очень тщательно уточняют сомнительные цифры. Устанавливают точность обработки опытных данных.
Особое место отведено анализу эксперимента — завершающей части, на основе которой делают вывод о подтверждении гипотезы научного исследования. Анализ эксперимента — это творческая часть исследования. Иногда за цифрами трудно четко представить физическую сущность процесса. Поэтому требуется особо тщательное сопоставление фактов, причин, обусловливающих ход того или иного процесса и установление адекватности гипотезы и эксперимента.
При обработке результатов измерений и наблюдений широко используют методы графического изображения. Графическое изображение дает наиболее наглядное представление о результатах экспериментов, позволяет лучше понять физическую сущность исследуемого процесса, выявить общий характер функциональной зависимости изучаемых переменных величин, установить наличие максимума или минимума функции.
Для графического изображения результатов измерений (наблюдений), как правило, применяют систему прямоугольных координат. Прежде чем строить график, необходимо знать ход (течение) исследуемого явления. Качественные закономерности и форма графика экспериментатору ориентировочно известны из теоретических исследований.
Точки на графике необходимо соединять плановой линией так, чтобы они по возможности ближе проходили ко всем экспериментальным точкам. Если соединить точки прямыми отрезками, то получим ломаную кривую. Она характеризует изменение функции по данным эксперимента. Обычно функции имеют плавный характер. Поэтому при графическом изображении результатов измерений следует проводить между точками плавные кривые.
Резкое искривление графика объясняется погрешностями измерений.
При графическом изображении результатов экспериментов большую роль играет выбор системы координат или координатной сетки.
Координатные сетки бывают равномерными и неравномерными. У равномерных координатных сеток ординаты и абсциссы имеют равномерную шкалу. Например, в системе прямоугольных координат длина откладываемых единичных отрезков на обеих осях одинаковая.
Из неравномерных координатных сеток наиболее распространены полулогарифмические, логарифмические, вероятностные.
Полулогарифмическая сетка имеет равномерную ординату и логарифмическую абсциссу.
Логарифмическая координатная сетка имеет обе оси логарифмические; вероятностная — ординату, обычно равномерную, и абсциссу — вероятностную шкалу.
Назначение неравномерных сеток разное. Чаще их применяют для более наглядного изображения функций. Так, многие криволинейные функции спрямляют на логарифмических сетках. Вероятностная сетка применяется в различных случаях: при обработке измерений для оценки их точности, при определении расчетных характеристик.
Большое значение имеет выбор масштаба графика, что связано с размерами чертежа и соответственно с точностью снимаемых, с него значений величин. Известно, что чем крупнее масштаб, тем выше точность снимаемых значений. Однако, как правило, графики не превышают размеров 20x15 см, что является удобным при составлении отчетов.
Масштаб по координатным осям обычно применяют разный. От его выбора зависит форма графика — он может быть плоским (узким) или вытянутым (широким) вдоль оси.
Расчетные графики, имеющие максимум (минимум) функции или какой-либо сложный вид, особо тщательно необходимо вычерчивать в зонах изгиба. На таких участках количество точек для вычерчивания графика должно быть значительно больше, чем на главных участках.
В некоторых случаях строят номограммы, существенно облегчающие применение для систематических расчетов сложных теоретических или эмпирических формул в определенных пределах измерения величин. Номограммированы могут быть любые алгебраические выражения. В результате сложные математические выражения можно решать сравнительно просто графическими методами. Построение номограмм — трудоемкая операция. Однако, будучи раз построенной, номограмма может быть использована для нахождения любой из переменных, входящих в номограммированные уравнения. Применение ЭВМ существенно снижает трудоемкость номограммирования.
Существует несколько методов построения номограмм. Для этого применяют равномерные или неравномерные координатные сетки. В системе прямоугольных координат функции в большинстве случаев на номограммах имеют криволинейную форму. Это увеличивает трудоемкость, поскольку требуется большое количество точек для нанесения одной кривой. В логарифмических координатных сетках функции имеют прямоугольную форму и составление номограмм упрощается.
Кривые, построенные по экспериментальным точкам, выравнивают известными в статистике методами. Например, методом выравнивания, который заключается в том, что кривую, построенную по экспериментальным точкам, представляют линейной функцией. Для нахождения параметров заданных уравнений часто применяют метод средних и метод наименьших квадратов.
Для исследования закономерностей между явлениями (процессами), которые зависят от многих, иногда неизвестных факторов, применяют корреляционный анализ. В процессе проведения эксперимента возникает потребность проверить соответствие экспериментальных данных теоретическим предпосылкам, т. е. проверить гипотезу исследования. Проверка экспериментальных данных на адекватность необходима также во всех случаях на стадии анализа теоретико-экспериментальных исследований. Методы оценки адекватности основаны на использовании доверительных интервалов, позволяющих с заданной доверительной вероятностью определять искомые значения оцениваемого параметра.
Список литературы
1. Мальцев Д.М., Емельянова Н.А. Основы научных исследований. - К., 1982. - 127 с.
2. Скаткин М.Н. Методология и методика научного исследования. - М.: Просвещение, 1986. - 189 с.
3. Лудченко А.А., Лудченко Я.Л, Примак Т.А. Основы научных исследований: Учеб. пособие/ под редакцией А.А. Лудченко. – 2-е изд., стер. – К.: О-во "Знания", КОО, 2001. — 113 с.