Реферат: Концепция современного естествознания 6

Странность - в ядерной физике - целое квантовое число, характеризующее адроны. Странности элементарных частиц и античастиц противоположны по знаку.

Адроны - элементарные частицы, участвующие в сильных взаимодействиях (протон, нейтрон, гипероны, мезоны, а также все резонансные частицы).

Элементарные частицы - простейшие структурные элементы материи, которые на современном уровне развития физики нельзя считать соединением других частиц.

Между элементарными частицами осуществляются сильные, электромагнитные и слабые взаимодействия, по отношению к которым элементарные частицы подразделяются:
- на адроны, участвующие в сильном взаимодействии;

- на лептоны, не участвующие в сильном взаимодействии; и

- на виртуальные частицы, выступающие переносчиками взаимодействий между частицами.

По другой классификации элементарные частицы подразделяются:

- на составные частицы адроны; и

- на фундаментальные частицы без внутренней структуры.

Глюон - гипотетическая частица, которая является переносчиком взаимодействия между кварками.

Глюон - квант поля межкваркового взаимодействия.

Кварки - гипотетические элементарные частицы, из которых состоят все адроны. Считается, что кварки заключены внутри адронов и неспособны их покидать.

Странность S - квантовое число в физике элементарных частиц, необходимое для описания определенных короткоживущих частиц. Странность частицы определяется как:

S = N - s - Ns ,

где

N-s — количество странных антикварков

Ns — количество странных кварков.

Причина для такого непонятного с первого взгляда определения в том, что концепция странности была определена до открытия существования кварков, и для сохранения смысла изначального определения странный кварк должен иметь странность -1, а странный антикварк должен иметь странность +1. Для всех ароматов кварков (странность, очарование, прелесть и истинность) правило следующее: значение аромата и электрический заряд кварка имеют одинаковый знак. По этому правилу любой аромат, переносимый заряженным мезоном, имеет тот же знак, что и его заряд. .

5. Дефект массы, энергия связи.

Задача о нецелочисленности атомного веса изотопов долго волновала учёных, но теория относительности, установив связь между массой и энергией тела (E=mc2), дала ключ к решению этой задачи, а протон-нейтронная модель атомного ядра оказалась тем замком, к которому этот ключ подошёл. Для решения данной задачи понадобятся некоторые сведения о массах элементарных частиц и атомных ядер (табл. 1.1).

Таблица 1.1

Масса и атомный вес некоторых частиц

Частица Символ Масса, кг Масса в физической шкале
Электрон e (9,1083±0,0003)´10-31 (5,48763±0,00006)´10–4
Протон (1,67239±0,00004)´10-27 1,007593±0,000003
Нейтрон (1,67470±0,00004)´10-27 1,008982±0,000003
Альфа-частица (6,6433±0,0001)´10-27 4,002780±0,000006

(Массы нуклидов и их разности определяют опытным путем с помощью: масс-спектроскопических измерений; измере­ний энергий различных ядерных реакций; измерений энергий β- и α-распадов; микроволновых измерений, дающих отношение масс или их разностей.)

Сравним массу a-частицы, т.е. ядра гелия, с массой двух протонов и двух нейтронов, из которых оно состоит. Для этого из суммы удвоенной массы протона и удвоенной массы нейтрона вычтем массу a-частицы и полученную таким образом величину назовём дефектом массы

D m =2 Mp +2 Mn - M a =0,03037 а.е.м. (1.1)

Атомная единица массы

m а.е.м.= (1,6597 ± 0,0004) ´ 10-27 кг.(1.2)

Пользуясь формулой связи между массой и энергией, делаемой теорией относительности, можно определить величину энергии, которая соответствует этой массе, и выразить её в джоулях или, что более удобно, в мегаэлектронвольтах (1 Мэв=106 эв). 1 Мэв соответствует энергии, приобретаемой электроном, прошедшим разность потенциалов в миллион вольт.

Энергия, соответствующая одной атомной единице массы, равна

E = m а.е.м. × с2=1,6597 × 10-27 × 8,99 × 1016=1,49 × 10-10 дж=931 Мэв. (1.3)

Наличие у атома гелия дефекта массы ( D m = 0,03037 а.е.м.) означает, что при его образовании была излучена энергия (Е= D m с2= 0,03037 × 931=28 Мэв) . Именно эту энергию нужно приложить к ядру атома гелия для того, чтобы разложить его на отдельные частицы. Соответственно на одну частицу приходится энергия, в четыре раза меньшая. Эта энергия характеризует прочность ядра и является важной его характеристикой. Её называют энергией связи, приходящейся на одну частицу или на один нуклон (р). Для ядра атома гелия р=28/4=7 Мэв, для других ядер она имеет иную величину.

В сороковые годы ХХ века благодаря работам Астона, Демпстера и других ученых с большой точностью были определены значения дефекта массы и вычислены энергии связи для ряда изотопов. На рис.1.1 эти результаты представлены в виде графика, на котором по оси абсцисс отложен атомный вес изотопов, а по оси ординат – средняя энергия связи частицы в ядре.

Анализ этой кривой интересен и важен, т.к. по ней, и очень наглядно, видно, какие ядерные процессы дают большой выход энергии. По существу ядерная энергетика Солнца и звёзд, атомных электростанций и ядерного оружия является реализацией возможностей, заложенных в тех соотношениях, которые показывает эта кривая. Она имеет несколько характерных участков. Для лёгкого водорода энергия связи равна нулю, т.к. в его ядре всего одна частица. Для гелия энергия связи на одну частицу составляет 7 Мэв. Таким образом, переход от водорода к гелию связан с крупным энергетическим скачком. У изотопов среднего атомного веса: железа, никеля и др. энергия связи частицы в ядре наибольшая (8,6 Мэв) и соответственно ядра этих элементов наиболее прочные. У более тяжёлых элементов энергия связи частицы в ядре меньше и поэтому их ядра относительно менее прочные. К таким ядрам относится и ядро атома урана-235.


??? ?????? ?????? ????? ????, ??? ??????? ??????? ???????? ??? ??? ???????????. ?????????????, ??????? ???????????, ??? ??????? ?????????? ?????????? ??????? ?????, ?????????????? ?????????? ?????????? ???????. ??????? 1.1 ??????????, ??? ??????? ??? ???????, ? ??????? ??? ??????? ???????????: ??????? ?? ????? ?????? ???????? ? ????? ???????, ????????, ?? ???????? ? ?????, ? ??????? ?? ????? ???????, ???????? ?????, ? ????? ?????? ???????? ????.

6. Симметрия и законы сохранения.

Слово "симметрия" ("symmetria") имеет греческое происхождение и означает "соразмерность". Научное определение симметрии принадлежит крупному немецкому математику Герману Вейлю (1885-1955), который в своей замечательной книге "Симметрия" проанализировал также переход от простого чувственного восприятия симметрии к ее научному пониманию. Согласно Вейлю, под симметрией следует понимать неизменность (инвариантность) какого-либо объекта при определенного рода преобразованиях. Можно сказать, что симметрия есть совокупность инвариантных свойств объекта. Например, кристалл может совмещаться с самим собой при определенных поворотах, отражениях, смещениях. Многие животные обладают приближенной зеркальной симметрией при отражении левой половины тела в правую и наоборот. Однако подчиняться законам симметрии может не только материальный, но и, к примеру, математический объект. Можно говорить об инвариантности функции, уравнения, оператора при тех или иных преобразованиях системы координат. Это в свою очередь позволяет применять категорию симметрии к законам физики. Так симметрия входит в математику и физику, где она также служит источником красоты и изящества.

К-во Просмотров: 157
Бесплатно скачать Реферат: Концепция современного естествознания 6