Реферат: Корпускулярная и континуальная концепции в описании природы
неизменность атомов (т.е. несотворимость и неуничтожимость материи);
противопоставление атомов пустому пространству (признание объективности пространства и движения).
2. МЕХАНИСТИЧЕСКИЙ АТОМИЗМ
Классическая механика XVII—XVIII вв. явилась дальнейшей разработкой атомистики. И. Ньютон в 1672— 1676 гг. распространил атомистику на световые явления и создал корпускулярную теорию света. Свет он считал потоком корпускул (частиц), однако на разных этапах рассматривал и возможность существования волновых свойств света, в частности, в 1675 г. предпринял попытку создать компромиссную корпускулярно-волновую природу света. По своему мировоззрению И. Ньютон был вторым после Р. Декарта великим представителем механистического материализма в естествознании XVII—XVIII вв. Р. Декарт стремился построить общую картину природы, в которой все явления природы объяснялись как результат движения больших и малых частиц, образованных из единой материи.
Недостатки механистической атомистики:
отсутствие достоверного экспериментального материала;
не являлась достаточно обоснованной естественнонаучной теорией;
атомы рассматривались как частицы, лишенные возможности превращения;
единственной формой движения принималось механическое движение;
стремилась все явления природы рассматривать как модификацию механического движения.
3. СОКРУШИТЕЛЬНЫЙ УДАР ПО ПРИНЦИПАМ МЕХАНИЦИЗМА
Сокрушительный удар по принципам механицизма был нанесен открытиями XIX—XX вв.:
открытием рентгеновских лучей и радиоактивного излучения в 1896 г. А. Беккерелем и исследованием его в 1898 г. П. Кюри и М. Склодовской-Кюри. Радиоактивный распад показал, что радиоактивность не связана с внешними, механическими воздействиями, а определяется внутренними процессами, проявляющимися в виде статистических закономерностей;
созданием теории электромагнитного поля Дж. Максвеллом (1860-1865 гг.);
открытием явления электромагнитной индукции М. Фарадеем (1831 г.). Ньютоновская теория дальнодействия и его схема мира господствовали до начала XX в. М. Фарадей и Дж. Максвелл впервые обнаружили ее непригодность и неприменимость к электромагнитным явлениям;
экспериментальным доказательством делимости атомов и открытием электрона английским физиком Дж. Дж. Томсоном (1897 г.), за что он был удостоен Нобелевской премии в 1906 г. В 1903 г. им была предложена одна из первых моделей атома, согласно которой атом представлял собой положительно заряженную сферу с вкрапленными в нее электронами (п добно булке с изюмом). В 1911 г. английский физик Э. Резерфорд, проводил пыты по рассеянию альфа-частиц атомами различных элементов, установил наличие в атоме плотного ядра диаметром около 10—12 см, заряженного положительно, и предложил для объяснения этих экспериментов планетарную модель атома. Модель подчинялась классической механике (движение ядра и электронов) и классической электродинамике (взаимодействие частиц). Электроны в этой модели, подобно планетам Солнечной системы, вращались вокруг ядра. Состояние атомов в классической физике определяется заданием координаты и скорости его составных частиц, т. е. можно получить мгновенный снимок его строения. Однако это противоречило экспериментальным данным.
4. ПРЕДПОСЫЛКИ ДЛЯ СОЗДАНИЯ БОЛЕЕ ВЫСОКОГО УРОВНЯ РАЗВИТИЯ АТОМИЗМА
Противоречия между существовавшими представлениями классической физики и экспериментальными данными, полученными Э. Резерфордом, были решены в 1913 г. датским ученым Н. Бором, который сделал вывод о необходимости принятия принципиально новой теории — квантовой — для построения модели атома. Применимость квантовых представлений и разработка квантовой теории Н. Бором создали возможность систематизировать и объяснить огромный экспериментальный материал. Постулаты Бора правильно отражали закономерности движения частиц и давали возможность подойти к раскрытию внутренних процессов атома. Однако у теории Бора были недостатки:
1. Постулаты Бора являлись гениальной догадкой.
2. Рассматривая орбиты, Бор пользовался методами классической физики, а объяснял излучение с квантовой точки зрения, т. е. использовал как классические, так и квантовые представления.
3. Постулаты были промежуточной фазой между классической и квантовой механикой, которая была сформирована в 20-х гг. XX в.
Значение теории Бора:
показала неправомерность абсолютизации классических принципов в физике;
вскрыла ограниченность ньютоновских представлений;
убедила научный мир в том, что господствующая физическая теория дает приблизительное, относительно верное описание явлений действительности и в процессе развития науки будет неизменно обогащаться, уточняться, полнее отражать действительность, способствуя созданию более последовательных фундаментальных теорий.
Это не означает, что отжившая теория теряет всякую научную ценность. Возникшая новая теория определяет границы применимости старой теории, т. е. указывает рамки ее применимости, использования и получения значительного научного эффекта.
Все это относится к теории Бора, так как она создала предпосылки для создания нового, более высокого уровня развития атомизма — квантовой теории атомных процессов.
5. КВАНТОВАЯ ТЕОРИЯ СТРОЕНИЯ АТОМА
Квантовая теория строения атома — это определенный раздел квантовой механики, объясняющий разнообразие свойств мельчайших частиц вещества. Основоположники ее — австрийский физик-теоретик Э. Шредингер, французский физик Л. де Бройль и немецкий физик-теоретик В. Гейзенберг — показали наличие у микрочастиц ряда новых особенностей, которые определяли характер современного атомизма:
корпускулярно-волновой природы элементарных частиц;
то, что волновые характеристики — это различные проявления единого материального образования. Исследования Л. де Бройля показали, что квантово-
механическая природа есть у всех видов материи. Классическая механика исключала возможность дифракции электрона, протона, нейтрона, а экспериментальные данные подтвердили гипотезу де Бройля и определили новый подход к пониманию процессов микромира.
Совершенно новыми оказались и свойства объектов современной атомистики. Принятые в классической механике понятия, характеризующие положение частицы в пространстве и ее движение, теряют теперь всякий смысл. В классической физике траектория давала возможность описать путь, она могла быть представлена в виде линии. В современном атомизме частицы не имеют траектории: можно лишь указать область пространства, в котором имеется определенная вероятность обнаружить частицу.