Реферат: Корреляционно-регрессионный анализ зависимости прибыли 40 банков от их чистых активов
Нижеследующие показатели были рассчитаны на основе данных групповой таблицы и вспомогательной таблицы (см. приложение 2).
Правило сложения дисперсий проверено: общая дисперсия и сумма межгрупповой и средней внутригрупповой дисперсий совпадают. Из полученных данных можно сделать вывод, что на 29% вариация прибыли банков обусловлена различиями в величине их активов, а на 71% - влиянием прочих факторов. Таким образом, факторный признак (чистые активы банков) имеет среднее влияние на результативный признак (прибыль/убыток).
Пункт №3
Измерить степень тесноты связи с помощью корреляционных отношений, проверить возможность использования линейной функции в качестве формы уравнения связи.
В
се нижеследующие показатели рассчитаны с помощью ранее найденных данных и данных вспомогательной таблицы (см. приложение 2).
Значение линейного коэффициента корреляции (r = -0,38) свидетельствует об отсутствии тесной связи. Средняя квадратическая ошибка коэффициента корреляции r =0,174, а r /r =2,18, так как r /r > tтабл. (2,18>2,07), то коэффициент корреляции можно считать существенным.
Корреляционное отношение (=0,54) показывает незначительную тесноту связи. Значимость рассчитанного корреляционного отношения оценивается с помощью дисперсионного отношения, равного 1,568. Так как 1,568<2,74 (F-критерий = 2,74), то оценивать тесноту связи с помощью корреляционного отношения нельзя из-за его несущественности.
Рассчитанные здесь же коэффициент Фехнера (Кф= -0,28) и коэффициент корреляции рангов Спирмэна (= -0,048) свидетельствуют о наличие слабой связи. Данные для расчета этих коэффициентов приведены во вспомогательной таблице (см. приложение 2).
Для проверки возможности использования линейной функции определяется величина 2 =0,986, она меньше табличного значения F-критерия (Fтабл.=2,9), поэтому гипотеза о возможности использования в качестве уравнения регрессии линейной функции не опровергается.
Итак, можно утверждать, что между факторным и результативным признаком существует слабая связь. На этом этапе можно было бы остановить исследование, так как очевидно, что был выбран факторный признак, не оказывающий существенного влияния на результативный. И построенная по нему модель связи вряд ли будет качественной и достоверной, и вряд ли будет иметь практическую пользу в экономическом смысле. Но я все же доведу исследование до конца.
Пункт №4
Рассчитать параметры уравнения регрессии, оценить его качество и достоверность, используя среднюю квадратическую ошибку. Дать оценку результатов исследования взаимосвязи в целом.
Определяется модель связи. График эмпирической функции регрессии и величина 2 показывают наличие линейной связи, поэтому используется функция ŷ = a + bx.
b= (xy – nx y)/(x2 - n(x)2)= -0,05
a= y - bx = 93 099,35
ŷ = 93 099,35 – 0,05x - модель связи.
Все данные для расчетов содержатся во вспомогательной таблице (см. приложение 2).
Средняя квадратическая ошибка уравнения:
Sl = ((y-ŷ)2/(n-l)) = 58 723, где ŷ – значения результативного признака, рассчитанные по уравнению связи, l – количество параметров уравнения регрессии.
(Sl / y)100 = (58723/14933)100=393%
Полученное отношение значительно больше 15%, поэтому уравнение достаточно плохо отображает взаимосвязь двух признаков и не может быть использовано в практической работе.
По результатам исследования можно сделать вывод о том, что, хотя теоретически между чистыми активами банков и их прибылями должна существовать прямая тесная связь, на практике же мы показали наличие довольно слабого влияния факторного признака на результативный. Это не совпадение может объясняться рядом причин: во-первых, ошибочными теоретическими предположениями, во-вторых, некачественной, нерепрезентативной выборкой, и, наконец, в-третьих, ошибками, допущенными в исследовании, которых, может быть, не удалось избежать.