Реферат: Кремнийорганические полимеры

Силоксаны содержат два или более атомов кремния, связанных посредством одного или нескольких атомов кислорода:

Два атома кремния, связанные таким образом, образуют дисилоксан, три - трисилоксан; полисилоксан содержит в молекуле большое число атомов кремния. Замкнутое кольцо из атомов кремния и кислорода образует циклосилоксан (в данном случае - циклотрисилоксан, поскольку это циклическая структура с тремя атомами кремния).

К свободным связям кремния (показанным в этих примерах черточками) могут присоединяться другие атомы кислорода. Если все связи кремния присоединены к кислороду, образуя регулярную структуру, то мы имеем дело с диоксидом кремния (кремнеземом или кварцем) SiO2 – одним из наиболее распространенных соединений в земной коре. С кремнием могут быть связаны небольшие органические группы. С метильными группами (– CH3) образуются метилсилоксаны (или метилсиликоны) – очень ценные химические продукты. Если каждый атом кремния соединен с тремя метильными группами, образуется гексаметилдисилоксан:

2(CH3)3SiCl + H2O = (CH3)3Si–O–Si(CH3)3 + 2HCl

Это летучая жидкость, внешне напоминающая бесцветный бензин.

Две метильные группы присоединены к каждому атому кремния в самых ценных продуктах из всех типов промышленных силиконов - в циклических и линейных силоксанах, примерами которых могут служить октаметилциклотетрасилоксан (I) и полидиметилсилоксан (II).[5]

Известны способы превращения циклосилоксанов в полидиметилсилоксаны, которые могут состоять из 15 000 и более диметилсилоксановых единиц. Можно не допустить образования молекул полидиметилсилоксанов столь большого размера, добавляя вещество, содержащее триметилсилоксановые единицы, чтобы оборвать рост полидиметилсилоксановой цепи при достижении ее желаемой длины.

Вязкость таких соединений возрастает по мере увеличения n, чему соответствует переход от очень подвижных, похожих на бензин, жидкостей к более вязким маслам и, наконец, к смолообразным веществам. Если к кремнию присоединена только одна органическая группа, то возникает сетчатая структура, характерная для полисилоксановых смол.

Обычно в производимых промышленностью таких смолах R – это метильные или фенильные (C6H5) группы.

Силоксаны могут быть получены сочетанием структурных единиц всех указанных типов, т.е. с одной, двумя, тремя органическими группами при кремнии или вообще без них. Органические группы могут быть одинаковыми или представлять собой комбинацию различных типов групп. Изменяя тип и число групп при кремнии, можно получить почти бесконечное разнообразие структур. В большинстве кремнийорганических полимеров такими группами обычно являются метил, фенил или их комбинация, подобранная для получения определенных свойств. [3]

Созданию большого разнообразия кремнийорганических соединений, выпускаемых современной промышленностью, предшествовала работа многих химиков в течение более 150 лет. Начало положил Й.Берцелиус открытием кремния (1823).Он показал, что кремний воспламеняется и энергично сгорает в токе горячего газообразного хлора с образованием жидкого вещества с удушливым запахом. Это тетрахлорид кремния SiCl4 – очень реакционноспособное соединение. С водой тетрахлорид кремния легко образует диоксид кремния и соляную кислоту:

SiCl4 + 2H2O = SiO2 + 4HCl

В 1844 французский химик Эбельман показал, что SiCl4 реагирует со спиртом, образуя приятно пахнущую жидкость – тетраэтилортосиликат (тетраэтоксисилан), применяемый в наше время в больших количествах в производстве кремнийорганических полимеров:

SiCl4 + 4C2H5OH = Si(OC2H5)4 + 4HCl


В 1857 Ф.Вёлер нагрел кремний с хлороводородом и получил дымящую жидкость - трихлорсилан HSiCl3, еще один важный промежуточный продукт для производства кремнийорганических полимеров.

Фридель, профессор Сорбонны, и Дж.Крафтс, студент из Бостона, обучавшийся в Париже, сообщили в 1863, что ими получено соединение, в котором органический радикал присоединен непосредственно к кремнию, и поэтому считается, что именно эти исследователи осуществили самый важный синтез в истории кремнийорганических соединений. Использованный ими метод в наше время сочли бы трудоемким, но он привел к успеху. Они приготовили воспламеняющееся на воздухе жидкое соединение цинка, диэтилцинк, смешали его с тетрахлоридом кремния и запаяли смесь в стеклянную трубку, которую нагревали при 160° C:

2Zn(C2H5)2 + SiCl4 = 2ZnCl2 + Si(C2H5)4

Полученное ими новое соединение кремния – тетраэтилсилан, в противоположность любым его ранее известным жидким соединениям, оказалось очень инертно: вода, кислоты и щелочи на него не действовали. Эта работа привлекла внимание молодого немецкого химика А.Ладенбурга. Ладенбург нашел способ управления реакцией с диэтилцинком, так что стало возможным по желанию присоединять к кремнию одну, две, три или четыре этильные группы. Полученный им диэтилдиэтоксисилан (C2H5)2 Si(OC2H5)2 реагировал с водой, образуя спирт и маслянистую жидкость:

В диэтилдиэтоксисилане этильные группы, присоединенные непосредственно к кремнию, действительно связаны очень прочно, но этоксильные группы легко удаляются водой c образованием спирта. Полученная жидкость разлагалась только при очень высоких температурах и не затвердевала при температурах много ниже точки замерзания воды. Так в 1872 Ладенбург синтезировал предшественник современных промышленных кремнийорганических полимеров, но потребовалось много усовершенствований, прежде чем стало возможным развитие промышленности кремнийорганических полимеров.

Заметный вклад в исследование кремнийорганических соединений в период 1898–1939 внес Ф. Киппинг из Ноттингемского университета в Англии. В конце 1930-х годов лишь немногие химики осознали огромную потенциальную ценность полисилоксанов. Среди них выделялись Дж. Хайд («Стекольные заводы Корнинга») и Р. Макгрегор из Института Меллона в США и К.А. Андрианов в России.

В 1945 Ю. Рохов обнаружил, что пары органических хлоридов реагируют с нагретым кремнием, образуя органохлорсиланы. Процесс наиболее гладко протекает с метилхлоридом. В идеальном случае реакция описывается следующим уравнением:

2CH3Cl + Si = (CH3)2SiCl2

Процессом можно управлять, благоприятствуя этой реакции, но во всех случаях образуются побочные продукты CH3SiCl3, (CH3)3SiCl, SiCl4, HSiCl3, CH3SiHCl2, Si2Cl6 и многие другие соединения. Почти все они могут быть использованы. Для разделения продуктов смесь перегоняют, а полученные вещества применяют для синтеза разнообразных кремнийорганических полимеров. Процесс удобен для крупномасштабного производства кремнийорганических соединений. Это открытие вызвало новый взрыв интереса к химии и технологии кремнийорганических полимеров.

Вскоре был открыт другой замечательный процесс, использующий дешевые углеводороды и трихлорид бора в качестве катализатора. Это позволило снизить стоимость производства целого спектра кремнийорганических соединений и цену товарных продуктов. Пример этого процесса приведен ниже:

При обработке водой триметилхлорсилана происходит его гидролиз и получается одна из простейших промышленных кремнийорганических жидкостей, гексаметилдисилоксан:

2(CH3)3SiCl + H2O = (CH3)3Si–O–Si(CH3)3 + 2HCl

В присутствии избытка диметилдихлорсилана образуются полимеры уже упоминавшегося типа.

Такие свойства полиорганосиликоновых эластомеров неоценимы для многих специальных целей. Неполный список изделий из них включает: прокладки и заглушки в домашних паровых утюгах и тостерах; изолирующие трубки для защиты свечей зажигания и электрооборудования в автомобилях, самолетах и судах; изоляционные втулки для конденсаторов и трансформаторов; изоляторы для наружной осветительной арматуры, электрических печей и нагревателей, моторов и навигационных систем; упругие уплотнители и замазки; покрытия для тканей из стеклянного и асбестового волокна и герметизирующих прокладок для самолетов, летающих на больших высотах.[2]

Получение кремнийорганических полимеров:

К-во Просмотров: 293
Бесплатно скачать Реферат: Кремнийорганические полимеры