Реферат: Криптографические системы
где k - номер такта; ak{0,1} - биты формируемой последовательности; ai {0,1} - постоянные коэффициенты; Å - операция суммирования по модулю 2. Генератор, описываемый отношением (2.1), показан на рис. 2.1.
Свойства генерируемой последовательности определяются постоянными коэффициентами ai. Их можно исследовать, анализируя характеристический полином
g(x) = 1 Å a1 x Å a2 x2Å...Å am-1 xm-1Å am xm.
При соответствующем выборе коэффициентов генерируемая последовательность { ai } будет иметь максимально возможный период, равный 2m-1, где m - разрядность сдвигового регистра и одновременно старшая степень порождающего полинома. Последовательность максимально возможного периода называется M-последовательностью. Основная задача синтеза генератора рассматриваемого типа - нахождение характеристического полинома, формирующего М-последовательность.
Полиномы, формирующие последовательность максимального периода, называются примитивными. С ростом m их количество становится очень большим. Среди множества примитивных полиномов степени m можно найти полиномы с наименьшим числом единичных коэффициентов ai . Генераторы, построенные на их основе, имеют наиболее простую техническую реализацию. В табл. 2.1 приведен перечень полиномов с минимальным количеством ненулевых коэффициентов для значений m <=16.
Схема четырехразрядного ГК, описываемого примитивным полиномом g(x)=1Å x3 Å x4 , приведена на рис. 2.2; его работа показана в табл. 2.2.
Для формирования M-последовательности наряду с примитивным полиномом g(x) может использоваться и обратный ему полином g-1 (x)=xm g(x-1 ). Полученная в этом случае последовательность максимальной длины будет инверсной по отношению к последовательности, формируемой g(x). Например, для полинома g(x)=1Åx3 Åx4 обратным полиномом будет g-1 (x) = x4 (1Åx-3 Åx-4 )=1 Å x Å x4 .
Главное преимущество описываемого метода формирования псевдослучайных последовательностей - простота его реализации. Генератор M-последовательности содержит лишь m-разрядный регистр сдвига и набор сумматоров по модулю два в цепи обратной связи. Регистр сдвига выполняет функции хранения m бит M-последовательности и сдвига m-разрядного кода на один разряд вправо. Сумматоры по модулю два вычисляют очередное значение младшего разряда сдвигового регистра.
Состояние разрядов регистра на каждом такте можно представить в виде m-мерных векторов A(k)=a1 (k)a2 (k)a3 (k)...am (k), где k=0,1,2,... - номер такта, ai (k) - состояние i-го разряда, i=1,m,
Последовательное применение соотношений (1) или (2) для s = 0 позволяет формировать соответственно одно- или многоразрядные псевдослучайные последовательности, которые характеризуется рядом статических свойств.
Рассмотрим наиболее важные свойства М-последовательностей.
1. Период последовательности, описываемой выражением (1), определяется старшей степенью порождающего полинома g(x) и равен L= 2m -1.
2. Для заданного полинома g(x) существует L различных M-последовательностей, отличающихся фазовым сдвигом. Так, полиному g(x)=1Åx3 Åx4 соответствует 15 M-последовательностей.
3. Количество единичных и нулевых символов ak , k=0,1,..., L-1, M-последовательности соответственно равно 2m-1 и 2m-1 -1. Вероятностная оценка частоты их появления определяется следующими выражениями:
p(ak =1)=2m-1 /(2m -1)=1/2 + 1/(2m+1 -2),
p(ak =0)=(2m-1 -1)/(2m -1) = 1/2-(2m+1 -2)
и при увеличении m достигает значений, сколь угодно близких к 1/2.
4. Вероятности появления серий из r, r {1,2,...,m-1}, одинаковых символов ( нулей или единиц ) в M-последовательности максимально близки к соответствующим вероятностям для случайной последовательности.
5. Для любого значения s ( 1s<L ) существует такое r s ( 1r<L), что {ak } + {ak -s}={ak -r}. Данное свойство обычно называют свойством сдвига и сложения.
Использование линейных сдвиговых регистров для создания криптосистем предполагает их уязвимость, если взломщик обладает парой: исходный текст - шифротекст длиной не менее 2m бит. Действительно, имея исходный текст M=(m1 ,m2 ,...,m2m ) и соответствующий шифротекст C=(c1 ,c2 ,...,c2m ), мы можем получить К=MÅC=(m1 Åc1 ,m2 Åc2 ,...,m2m Åc2m )=(k1 ,k2 ,k3 ,...,k2m ). Тогда задача взлома криптосистемы при известном начальном состоянии сводится к решению системы из m линейных уравнений с m неизвестными, где неизвестными являются коэффициенты порождающего полинома.
Данная система имеет вид
1 k1 Å2 k2 Å3 k3 Å ... Åm km =km+1
1 k2 Å2 k3 Å3 k4 Å ... Åm km+1 =km+2
1 k3 Å2 k4 Å3 k5 Å ... Åm km+2 =km+3
.... ....
1 km Å2 km+1 Å3 km+2 Å ... Åm km+m-1 =k2m .
3. КРИПТОГРАФИЧЕСКИЕ СИСТЕМЫ С ОТКРЫТЫМ КЛЮЧОМ
Первые криптографические системы с открытым ключем появились в конце 1970-х годов. От классических алгоритмов они отличаются тем, что для шифрования данных используется один ключ (открытый ), а для дешифрования - другой (секретный ). Данные, зашифрованные открытым ключем, можно расшифровать только секретным ключем. Следовательно, открытый ключ может распространяться через обычные коммуникационные сети и другие открытые каналы. Таким образом, устраняется главный недостаток стандартных криптографических алгоритмов: необходимость использовать специальные каналы связи для распределения ключей. Разумеется, секретный ключ не может быть вычислен из открытого ключа.
В настоящее время лучшим криптографическим алгоритмом с открытым ключем считается RSA (по имени создателей: Rivest, Shamir, Adelman). Перед изложением метода RSA определим некоторые термины.